JEE MAIN - Mathematics (2022 - 29th June Evening Shift - No. 11)
Explanation
Given,
5 numbers are 3, 7, 12, a, 43 $$-$$ a
$$\therefore$$ Mean $$(\overline x ) = {{3 + 7 + 12 + a + 43 - a} \over 5}$$
$$ = {{65} \over 5}$$
$$ = 13$$
We know,
Variance $$({\sigma ^2}) = {{\sum {x_1^2} } \over n} - {(\overline x )^2}$$
$$ = {{{3^2} + {7^2} + {{12}^2} + {a^2} + {{(43 - a)}^2}} \over 5} - {(13)^2}$$
$$ = {{9 + 49 + 144 + {a^2} + 1849 + {a^2} - 86a} \over 5} - 169$$
$$ = {{2{a^2} - 86a + 2051} \over 5} - 169$$
$$ = {{2{a^2} - 86a + 2051 - 845} \over 5}$$
$$ = {{2{a^2} - 86a + 1206} \over 5}$$
$$ = {2 \over 5}({a^2} - 43a + 603)$$
Variance will be natural number if $${a^2} - 43a + 603$$ in multiple of 5.
$$\therefore$$ $${a^2} - 43a + 603 = 5n$$
$$ \Rightarrow {a^2} - 43a + 603 - 5n = 0$$ ..... (1)
$$\therefore$$ $$a = {{43\, \pm \,\sqrt D } \over 2}$$
Now "a" will be natural number if
(1) D is a perfect square and
(2) $$43\, \pm \,\sqrt D $$ is multiple of 2
From equation (1),
$$D = {( - 43)^2} - 4\,.\,1\,.\,(603 - 5n)$$
$$ = 1849 - 2412 + 20n$$
$$ = 20n - 563$$
For any value of n, unit digit of 20n is always 0. Then 20n $$-$$ 563 will give a number whose unit digit is 7.
For perfect square numbers ex : 12 = 1, 22 = 4, 32 = 9, 42 = 16, 52 = 25, 62 = 36, 72 = 49, 82 = 64, 92 = 81, 102 = 100
So, unit digit is either 1, 4, 6, 5, 6, 9, 0 it can't be 7. So D can't be perfect square.
Comments (0)
