JEE MAIN - Mathematics (2022 - 29th June Evening Shift - No. 4)
Let f be a real valued continuous function on [0, 1] and $$f(x) = x + \int\limits_0^1 {(x - t)f(t)dt} $$.
Then, which of the following points (x, y) lies on the curve y = f(x) ?
Explanation
Given,
$$f(x) = x + \int_0^1 {(x - t)f(t)dt} $$
$$ = x + x\int_0^1 {f(t)dt - \int_0^1 {tf(t)dt} } $$
$$ = x\left( {1 + \int_0^1 {f(t)dt} } \right) - \int_0^1 {tf(t)dt} $$
Now,
let $$A = 1 + \int_0^1 {f(t)dt} $$
and $$B = \int_0^1 {tf(t)dt} $$
$$\therefore$$ $$f(x) = Ax - B$$
$$ \Rightarrow f(t) = At - B$$
So, $$A = 1 + \int_0^1 {f(t)dt} $$
$$ = 1 + \int_0^1 {(At - B)dt} $$
$$ = 1 + \left[ {{{A{t^2}} \over 2} - Bt} \right]_0^1$$
$$ = 1 + {A \over 2} - B$$
$$ \Rightarrow {A \over 2} = 1 - B$$ ...... (1)
$$B = \int_0^1 {tf(t)dt} $$
$$ = \int_0^1 {t(At - B)dt} $$
$$ = \int_0^1 {(A{t^2} - Bt)dt} $$
$$ = \left[ {{{A{t^3}} \over 3} - {{B{t^2}} \over 2}} \right]_0^1$$
$$ = {A \over 3} - {B \over 2}$$
$$ \Rightarrow {{3B} \over 2} = {A \over 3}$$ ....... (2)
Solving equation (1) and (2) we get,
$$A = {{18} \over {13}}$$ and $$B = {4 \over {13}}$$
$$\therefore$$ $$f(x) = {{18} \over {13}}x - {4 \over {13}}$$
By checking all the options you can see when x = 6 we get
$$y = f(x) = {{18} \over {13}} \times 6 - {4 \over {13}}$$
$$ = {{108 - 4} \over {13}} = 8$$
$$\therefore$$ Point (6, 8) lies on the curve.
Comments (0)
