JEE MAIN - Mathematics (2022 - 29th June Evening Shift - No. 20)
Let f(x) and g(x) be two real polynomials of degree 2 and 1 respectively. If $$f(g(x)) = 8{x^2} - 2x$$ and $$g(f(x)) = 4{x^2} + 6x + 1$$, then the value of $$f(2) + g(2)$$ is _________.
Answer
18
Explanation
$f(g(x))=8 x^{2}-2 x$
$$
g(f(x))=4 x^{2}+6 x+1
$$
let $f(x)=c x^{2}+d x+e$
$g(x)=a x+b$
$f(g(x))=c(a x+b)^{2}+d(a x+b)+e \equiv 8 x^{2}-2 x$
$g(f(x))=a\left(c x^{2}+d x+e\right)+b \equiv 4 x^{2}+6 x+1$
$\therefore \quad a c=4 \quad a d=6 \quad a e+b=1$
$a^{2} c=8 \quad 2 a b c+a d=-2 \quad c b^{2}+b d+e=0$
By solving
$a=2 \quad b=-1$
$c=2 \quad d=3 \quad e=1$
$\therefore \quad f(x)=2 x^{2}+3 x+1$
$g(x)=2 x-1$
$f(2)+g(2)=2(2)^{2}+3(2)+1+2(2)-1$
$=18$
let $f(x)=c x^{2}+d x+e$
$g(x)=a x+b$
$f(g(x))=c(a x+b)^{2}+d(a x+b)+e \equiv 8 x^{2}-2 x$
$g(f(x))=a\left(c x^{2}+d x+e\right)+b \equiv 4 x^{2}+6 x+1$
$\therefore \quad a c=4 \quad a d=6 \quad a e+b=1$
$a^{2} c=8 \quad 2 a b c+a d=-2 \quad c b^{2}+b d+e=0$
By solving
$a=2 \quad b=-1$
$c=2 \quad d=3 \quad e=1$
$\therefore \quad f(x)=2 x^{2}+3 x+1$
$g(x)=2 x-1$
$f(2)+g(2)=2(2)^{2}+3(2)+1+2(2)-1$
$=18$
Comments (0)
