STATEMENT-2: $$\sum\limits_{i = 1}^n {P\left( {{H_i}} \right)} = 1.$$
Column $$I$$
(A) If $$a=1$$ and $$b=0,$$ then $$(x, y)$$
(B) If $$a=1$$ and $$b=1,$$ then $$(x, y)$$
(C) If $$a=1$$ and $$b=2,$$ then $$(x, y)$$
(D) If $$a=2$$ and $$b=2,$$ then $$(x, y)$$
Column $$II$$
(p) lies on the circle $${x^2} + {y^2} = 1$$
(q) lies on $$\left( {{x^2} - 1} \right)\left( {{y^2} - 1} \right) = 0$$
(r) lies on $$y=x$$
(s) lies on $$\left( {4{x^2} - 1} \right)\left( {{y^2} - 1} \right) = 0$$
The line $$y=x$$ meets $$y = k{e^x}$$ for $$k \le 0$$ at
The positive value of $$k$$ for which $$k{e^x} - x = 0$$ has only one root is
For $$k>0$$, the set of all values of $$k$$ for which $$k{e^x} - x = 0$$ has two distinct roots is
STATEMENT-1: The function $$F(x)$$ satisfies $$F\left( {x + \pi } \right) = F\left( x \right)$$
for all real $$x$$. because
STATEMENT-2: $${\sin ^2}\left( {x + \pi } \right) = {\sin ^2}x$$ for all real $$x$$.
Column $$I$$
(A) $$\int\limits_{ - 1}^1 {{{dx} \over {1 + {x^2}}}} $$
(B) $$\int\limits_0^1 {{{dx} \over {\sqrt {1 - {x^2}} }}} $$
(C) $$\int\limits_2^3 {{{dx} \over {1 - {x^2}}}} $$
(D) $$\int\limits_1^2 {{{dx} \over {x\sqrt {{x^2} - 1} }}} $$
Column $$II$$
(p) $${1 \over 2}\log \left( {{2 \over 3}} \right)$$
(q) $$2\log \left( {{2 \over 3}} \right)$$
(r) $${{\pi \over 3}}$$
(s) $${{\pi \over 2}}$$
Match the conditions/expressions in Column $$I$$ with statements in Column $$II$$ and indicate your answer by darkening the appropriate bubbles in the $$4 \times 4$$ matrix given in the $$ORS.$$
$$\,\,\,$$ Column $$I$$
(A)$$\,\,a + b + c \ne 0$$ and $${a^2} + {b^2} + {c^2} = ab + bc + ca$$
(B)$$\,\,$$ $$a + b + c = 0$$ and $${a^2} + {b^2} + {c^2} \ne ab + bc + ca$$
(C)$$\,\,a + b + c \ne 0$$ and $${a^2} + {b^2} + {c^2} \ne ab + bc + ca$$
(D)$$\,\,$$ $$a + b + c = 0$$ and $${a^2} + {b^2} + {c^2} = ab + bc + ca$$
$$\,\,\,$$ Column $$II$$
(p)$$\,\,\,$$ the equations represents planes meeting only at asingle point
(q)$$\,\,\,$$ the equations represents the line $$x=y=z.$$
(r)$$\,\,\,$$ the equations represent identical planes.
(s) $$\,\,\,$$ the equations represents the whole of the three dimensional space.
STATEMENT-1: The parametric equations of the line of intersection of the given planes are $$x=3+14t,y=1+2t,z=15t.$$ because
STATEMENT-2: The vector $${14\widehat i + 2\widehat j + 15\widehat k}$$ is parallel to the line of intersection of given planes.
Column $$I$$
(A) Two intersecting circles
(B) Two mutually external circles
(C) Two circles, one strictly inside the other
(D) Two branches vof a hyperbola
Column $$II$$
(p) have a common tangent
(q) have a common normal
(r) do not have a common tangent
(s) do not have a common normal
Column I
(A) GMeMs ,
G $$ \to $$ universal gravitational constant, Me $$ \to $$ mass of the earth,
Ms $$ \to $$ mass of the Sun
(B) $${{3RT} \over M}$$,
R $$ \to $$ universal gas constant, T $$ \to $$ absolute temperature,
M $$ \to $$ molar mass
(C) $${{{F^2}} \over {{q^2}{B^2}}}$$ ,
F $$ \to $$ force, q $$ \to $$ charge, B $$ \to $$ magnetic field
(D) $${{G{M_e}} \over {{R_e}}}$$,
G $$ \to $$ universal gravitational constant,
Me $$ \to $$ mass of the earth, Re $$ \to $$ radius of the earth
Column II
(p) (volt) (coulomb) (metre)
(q) (kilogram) (metre)3 (second)ā2
(r) (meter)2(second)ā2
(s) (farad) (volt)2 (kg)ā1