JEE Advance - Mathematics (2007 - No. 3)
Let $$(x, y)$$ be such that $${\sin ^{ - 1}}\left( {ax} \right) + {\cos ^{ - 1}}\left( y \right) + {\cos ^{ - 1}}\left( {bxy} \right) = {\pi \over 2}$$.
Column $$I$$
(A) If $$a=1$$ and $$b=0,$$ then $$(x, y)$$
(B) If $$a=1$$ and $$b=1,$$ then $$(x, y)$$
(C) If $$a=1$$ and $$b=2,$$ then $$(x, y)$$
(D) If $$a=2$$ and $$b=2,$$ then $$(x, y)$$
Column $$II$$
(p) lies on the circle $${x^2} + {y^2} = 1$$
(q) lies on $$\left( {{x^2} - 1} \right)\left( {{y^2} - 1} \right) = 0$$
(r) lies on $$y=x$$
(s) lies on $$\left( {4{x^2} - 1} \right)\left( {{y^2} - 1} \right) = 0$$
If a=1 and b=0, then (x, y) lies on the circle x^2 + y^2 = 1
If a=1 and b=1, then (x, y) lies on (x^2 - 1)(y^2 - 1) = 0
If a=1 and b=2, then (x, y) lies on the circle x^2 + y^2 = 1
If a=2 and b=2, then (x, y) lies on (4x^2 - 1)(y^2 - 1) = 0
None of the above
Comments (0)
