A circle passes through three points A, B and C with the line segment AC as its diameter. A line passing through A angles DAB and CAB are $$\,\alpha \,\,and\,\,\beta $$ respectively and the distance between the point A and the mid point of the line segment DC is d, prove that the area of the circle is $$${{\pi \,{d^2}\,\,{{\cos }^2}\,\,\alpha } \over {{{\cos }^2}\,\alpha \, + \,{{\cos }^2}\,\beta \, + \,\,2\,\cos \,\,\alpha \,\,\cos \,\beta \,\cos \,\,(\beta - \alpha )\,}}$$$