JEE MAIN - Mathematics (2025 - 4th April Evening Shift)

1
Let $\mathrm{A}=\{-3,-2,-1,0,1,2,3\}$ and R be a relation on A defined by $x \mathrm{R} y$ if and only if $2 x-y \in\{0,1\}$. Let $l$ be the number of elements in $R$. Let $m$ and $n$ be the minimum number of elements required to be added in R to make it reflexive and symmetric relations, respectively. Then $l+\mathrm{m}+\mathrm{n}$ is equal to:
Answer
(A)
17
2
Let the domains of the functions $f(x)=\log _4 \log _3 \log _7\left(8-\log _2\left(x^2+4 x+5\right)\right)$ and $\mathrm{g}(x)=\sin ^{-1}\left(\frac{7 x+10}{x-2}\right)$ be $(\alpha, \beta)$ and $[\gamma, \delta]$, respectively. Then $\alpha^2+\beta^2+\gamma^2+\delta^2$ is equal to :
Answer
(A)
15
3
Let the mean and the standard deviation of the observation $2,3,3,4,5,7, a, b$ be 4 and $\sqrt{2}$ respectively. Then the mean deviation about the mode of these observations is :
Answer
(C)
1
4
Let the sum of the focal distances of the point $\mathrm{P}(4,3)$ on the hyperbola $\mathrm{H}: \frac{x^2}{\mathrm{a}^2}-\frac{y^2}{\mathrm{~b}^2}=1$ be $8 \sqrt{\frac{5}{3}}$. If for H , the length of the latus rectum is $l$ and the product of the focal distances of the point P is m , then $9 l^2+6 \mathrm{~m}$ is equal to :
Answer
(D)
185
5
Let $\mathrm{a}>0$. If the function $f(x)=6 x^3-45 \mathrm{a} x^2+108 \mathrm{a}^2 x+1$ attains its local maximum and minimum values at the points $x_1$ and $x_2$ respectively such that $x_1 x_2=54$, then $\mathrm{a}+x_1+x_2$ is equal to :
Answer
(D)
18
6
Let the matrix $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ satisfy $A^n=A^{n-2}+A^2-I$ for $n \geqslant 3$. Then the sum of all the elements of $\mathrm{A}^{50}$ is :
Answer
(D)
53
7
If a curve $y=y(x)$ passes through the point $\left(1, \frac{\pi}{2}\right)$ and satisfies the differential equation $\left(7 x^4 \cot y-\mathrm{e}^x \operatorname{cosec} y\right) \frac{\mathrm{d} x}{\mathrm{~d} y}=x^5, x \geq 1$, then at $x=2$, the value of $\cos y$ is :
Answer
(C)
$\frac{2 \mathrm{e}^2-\mathrm{e}}{128}$
8
If the sum of the first 20 terms of the series $\frac{4 \cdot 1}{4+3 \cdot 1^2+1^4}+\frac{4 \cdot 2}{4+3 \cdot 2^2+2^4}+\frac{4 \cdot 3}{4+3 \cdot 3^2+3^4}+\frac{4 \cdot 4}{4+3 \cdot 4^2+4^4}+\ldots \cdot$ is $\frac{\mathrm{m}}{\mathrm{n}}$, where m and n are coprime, then $\mathrm{m}+\mathrm{n}$ is equal to :
Answer
(B)
421
9
Let for two distinct values of p the lines $y=x+\mathrm{p}$ touch the ellipse $\mathrm{E}: \frac{x^2}{4^2}+\frac{y^2}{3^2}=1$ at the points A and B . Let the line $y=x$ intersect E at the points C and D . Then the area of the quadrilateral $A B C D$ is equal to :
Answer
(C)
24
10
The centre of a circle C is at the centre of the ellipse $\mathrm{E}: \frac{x^2}{\mathrm{a}^2}+\frac{y^2}{\mathrm{~b}^2}=1, \mathrm{a}>\mathrm{b}$. Let C pass through the foci $F_1$ and $F_2$ of E such that the circle $C$ and the ellipse $E$ intersect at four points. Let P be one of these four points. If the area of the triangle $\mathrm{PF}_1 \mathrm{~F}_2$ is 30 and the length of the major axis of $E$ is 17 , then the distance between the foci of $E$ is :
Answer
(C)
13
11
A line passing through the point $\mathrm{A}(-2,0)$, touches the parabola $\mathrm{P}: y^2=x-2$ at the point $B$ in the first quadrant. The area, of the region bounded by the line $A B$, parabola $P$ and the $x$-axis, is :
Answer
(C)
$\frac{8}{3}$
12
Let the product of $\omega_1=(8+i) \sin \theta+(7+4 i) \cos \theta$ and $\omega_2=(1+8 i) \sin \theta+(4+7 i) \cos \theta$ be $\alpha+i \beta$, $i=\sqrt{-1}$. Let p and q be the maximum and the minimum values of $\alpha+\beta$ respectively. Then $\mathrm{p}+\mathrm{q}$ is equal to :
Answer
(A)
130
13
If $1^2 \cdot\left({ }^{15} C_1\right)+2^2 \cdot\left({ }^{15} C_2\right)+3^2 \cdot\left({ }^{15} C_3\right)+\ldots+15^2 \cdot\left({ }^{15} C_{15}\right)=2^m \cdot 3^n \cdot 5^k$, where $m, n, k \in \mathbf{N}$, then $\mathrm{m}+\mathrm{n}+\mathrm{k}$ is equal to :
Answer
(B)
19
14
Let A be the point of intersection of the lines $\mathrm{L}_1: \frac{x-7}{1}=\frac{y-5}{0}=\frac{z-3}{-1}$ and $\mathrm{L}_2: \frac{x-1}{3}=\frac{y+3}{4}=\frac{z+7}{5}$. Let B and C be the points on the lines $\mathrm{L}_1$ and $\mathrm{L}_2$ respectively such that $A B=A C=\sqrt{15}$. Then the square of the area of the triangle $A B C$ is :
Answer
(D)
54
15
The sum of the infinite series $\cot ^{-1}\left(\frac{7}{4}\right)+\cot ^{-1}\left(\frac{19}{4}\right)+\cot ^{-1}\left(\frac{39}{4}\right)+\cot ^{-1}\left(\frac{67}{4}\right)+\ldots$. is :
Answer
(C)
$\frac{\pi}{2}-\tan ^{-1}\left(\frac{1}{2}\right)$
16
The axis of a parabola is the line $y=x$ and its vertex and focus are in the first quadrant at distances $\sqrt{2}$ and $2 \sqrt{2}$ units from the origin, respectively. If the point $(1, k)$ lies on the parabola, then a possible value of k is :
Answer
(C)
9
17
Let $f(x)+2 f\left(\frac{1}{x}\right)=x^2+5$ and $2 g(x)-3 g\left(\frac{1}{2}\right)=x, x>0$. If $\alpha=\int_1^2 f(x) \mathrm{d} x$, and $\beta=\int_1^2 g(x) \mathrm{d} x$, then the value of $9 \alpha+\beta$ is :
Answer
(D)
11
18
Consider two sets A and B, each containing three numbers in A.P. Let the sum and the product of the elements of A be 36 and p respectively and the sum and the product of the elements of B be 36 and $q$ respectively. Let d and D be the common differences of $\mathrm{AP}^{\prime} \mathrm{s}$ in $A$ and $B$ respectively such that $D=d+3, d>0$. If $\frac{p+q}{p-q}=\frac{19}{5}$, then $\mathrm{p}-\mathrm{q}$ is equal to
Answer
(A)
540
19
Let the values of p , for which the shortest distance between the lines $\frac{x+1}{3}=\frac{y}{4}=\frac{z}{5}$ and $\overrightarrow{\mathrm{r}}=(\mathrm{p} \hat{i}+2 \hat{j}+\hat{k})+\lambda(2 \hat{i}+3 \hat{j}+4 \hat{k})$ is $\frac{1}{\sqrt{6}}$, be $\mathrm{a}, \mathrm{b},(\mathrm{a}<\mathrm{b})$. Then the length of the latus rectum of the ellipse $\frac{x^2}{\mathrm{a}^2}+\frac{y^2}{\mathrm{~b}^2}=1$ is :
Answer
(D)
$\frac{2}{3}$
20
Let $f$ be a differentiable function on $\mathbf{R}$ such that $f(2)=1, f^{\prime}(2)=4$. Let $\lim \limits_{x \rightarrow 0}(f(2+x))^{3 / x}=\mathrm{e}^\alpha$. Then the number of times the curve $y=4 x^3-4 x^2-4(\alpha-7) x-\alpha$ meets $x$-axis is :
Answer
(C)
2
21
If $\int \frac{\left(\sqrt{1+x^2}+x\right)^{10}}{\left(\sqrt{1+x^2}-x\right)^9} \mathrm{~d} x=\frac{1}{\mathrm{~m}}\left(\left(\sqrt{1+x^2}+x\right)^{\mathrm{n}}\left(\mathrm{n} \sqrt{1+x^2}-x\right)\right)+\mathrm{C}$ where C is the constant of integration and $\mathrm{m}, \mathrm{n} \in \mathbf{N}$, then $\mathrm{m}+\mathrm{n}$ is equal to _________ .
Answer
379
22
A card from a pack of 52 cards is lost. From the remaining 51 cards, n cards are drawn and are found to be spades. If the probability of the lost card to be a spade is $\frac{11}{50}$, then n is equal to ________ .
Answer
2
23
Let the three sides of a triangle ABC be given by the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$. Let $G$ be the centroid of the triangle $A B C$. Then $6\left(|\overrightarrow{\mathrm{AG}}|^2+|\overrightarrow{\mathrm{BG}}|^2+|\overrightarrow{\mathrm{CG}}|^2\right)$ is equal to __________.
Answer
164
24
If $\alpha$ is a root of the equation $x^2+x+1=0$ and $\sum_\limits{\mathrm{k}=1}^{\mathrm{n}}\left(\alpha^{\mathrm{k}}+\frac{1}{\alpha^{\mathrm{k}}}\right)^2=20$, then n is equal to _________.
Answer
11
25
Let m and $\mathrm{n},(\mathrm{m}<\mathrm{n})$, be two 2-digit numbers. Then the total numbers of pairs $(\mathrm{m}, \mathrm{n})$, such that $\operatorname{gcd}(m, n)=6$, is __________ .
Answer
64