JEE MAIN - Mathematics (2025 - 4th April Evening Shift - No. 6)
Let the matrix $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ satisfy $A^n=A^{n-2}+A^2-I$ for $n \geqslant 3$. Then the sum of all the elements of $\mathrm{A}^{50}$ is :
44
39
52
53
Explanation
$$\begin{aligned}
&\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \\
& A^2=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \\
& A^3=A+A^2-I \\
& A^3=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \\
& A^4=A^2+A^2-I=2 A^2-I \\
& A^4=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
2 & 0 & 1
\end{array}\right] \text { and } A^5=\left[\begin{array}{lll}
1 & 0 & 0 \\
3 & 0 & 1 \\
2 & 1 & 0
\end{array}\right] \\
& A^{50}=\left[\begin{array}{lll}
1 & 0 & 0 \\
25 & 1 & 0 \\
25 & 0 & 1
\end{array}\right]
\end{aligned}\\
&\text { Sum of elements }=53
\end{aligned}$$
Comments (0)
