JEE MAIN - Mathematics (2024 - 1st February Morning Shift)

1
A bag contains 8 balls, whose colours are either white or black. 4 balls are drawn at random without replacement and it was found that 2 balls are white and other 2 balls are black. The probability that the bag contains equal number of white and black balls is :
Answer
(B)
$\frac{2}{7}$
2
The value of the integral $\int\limits_0^{\pi / 4} \frac{x \mathrm{~d} x}{\sin ^4(2 x)+\cos ^4(2 x)}$ equals :
Answer
(C)
$\frac{\sqrt{2} \pi^2}{32}$
3
If $\mathrm{A}=\left[\begin{array}{cc}\sqrt{2} & 1 \\ -1 & \sqrt{2}\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right], \mathrm{C}=\mathrm{ABA}^{\mathrm{T}}$ and $\mathrm{X}=\mathrm{A}^{\mathrm{T}} \mathrm{C}^2 \mathrm{~A}$, then $\operatorname{det} \mathrm{X}$ is equal to :
Answer
(B)
729
4
If $\tan \mathrm{A}=\frac{1}{\sqrt{x\left(x^2+x+1\right)}}, \tan \mathrm{B}=\frac{\sqrt{x}}{\sqrt{x^2+x+1}}$ and

$\tan \mathrm{C}=\left(x^{-3}+x^{-2}+x^{-1}\right)^{1 / 2}, 0<\mathrm{A}, \mathrm{B}, \mathrm{C}<\frac{\pi}{2}$, then $\mathrm{A}+\mathrm{B}$ is equal to :
Answer
(A)
$\mathrm{C}$
5
If $\mathrm{n}$ is the number of ways five different employees can sit into four indistinguishable offices where any office may have any number of persons including zero, then $\mathrm{n}$ is equal to :
Answer
(C)
51
6
Let $\mathrm{S}=|\mathrm{z} \in \mathrm{C}:| z-1 \mid=1$ and $(\sqrt{2}-1)(z+\bar{z})-i(z-\bar{z})=2 \sqrt{2} \mid$. Let $z_1, z_2 \in \mathrm{S}$ be such that $\left|z_1\right|=\max\limits_{z \in s}|z|$ and $\left|z_2\right|=\min\limits _{z \in S}|z|$. Then $\left|\sqrt{2} z_1-z_2\right|^2$ equals :
Answer
(D)
2
7
Let the median and the mean deviation about the median of 7 observation $170,125,230,190,210$, a, b be 170 and $\frac{205}{7}$ respectively. Then the mean deviation about the mean of these 7 observations is :
Answer
(C)
30
8
Let $\overrightarrow{\mathrm{a}}=-5 \hat{i}+\hat{j}-3 \hat{k}, \overrightarrow{\mathrm{b}}=\hat{i}+2 \hat{j}-4 \hat{k}$ and

$\overrightarrow{\mathrm{c}}=(((\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \times \hat{i}) \times \hat{i}) \times \hat{i}$. Then $\vec{c} \cdot(-\hat{i}+\hat{j}+\hat{k})$ is equal to :
Answer
(A)
-12
9
Let $\mathbf{S}=\left\{x \in \mathbf{R}:(\sqrt{3}+\sqrt{2})^x+(\sqrt{3}-\sqrt{2})^x=10\right\}$. Then the number of elements in $\mathrm{S}$ is :
Answer
(C)
2
10
The area enclosed by the curves $x y+4 y=16$ and $x+y=6$ is equal to :
Answer
(C)
$30-32 \log _{\mathrm{e}} 2$
11
Let $f: \mathbf{R} \rightarrow \mathbf{R}$ and $g: \mathbf{R} \rightarrow \mathbf{R}$ be defined as

$f(x)=\left\{\begin{array}{ll}\log _{\mathrm{e}} x, & x>0 \\ \mathrm{e}^{-x}, & x \leq 0\end{array}\right.$ and

$g(x)=\left\{\begin{array}{ll}x, & x \geqslant 0 \\ \mathrm{e}^x, & x<0\end{array}\right.$. Then, gof : $\mathbf{R} \rightarrow \mathbf{R}$ is :
Answer
(B)
neither one-one nor onto
12
If the system of equations

$$ \begin{aligned} & 2 x+3 y-z=5 \\\\ & x+\alpha y+3 z=-4 \\\\ & 3 x-y+\beta z=7 \end{aligned} $$

has infinitely many solutions, then $13 \alpha \beta$ is equal to :
Answer
(B)
1120
13
For $0<\theta<\pi / 2$, if the eccentricity of the hyperbola

$x^2-y^2 \operatorname{cosec}^2 \theta=5$ is $\sqrt{7}$ times eccentricity of the

ellipse $x^2 \operatorname{cosec}^2 \theta+y^2=5$, then the value of $\theta$ is :
Answer
(C)
$\frac{\pi}{3}$
14
Let $y=y(x)$ be the solution of the differential equation

$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x(x+y)^3-x(x+y)-1, y(0)=1$.

Then, $\left(\frac{1}{\sqrt{2}}+y\left(\frac{1}{\sqrt{2}}\right)\right)^2$ equals :
Answer
(D)
$\frac{1}{2-\sqrt{\mathrm{e}}}$
15
Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined as :

$$ f(x)= \begin{cases}\frac{a-b \cos 2 x}{x^2} ; & x<0 \\\\ x^2+c x+2 ; & 0 \leq x \leq 1 \\\\ 2 x+1 ; & x>1\end{cases} $$

If $f$ is continuous everywhere in $\mathbf{R}$ and $m$ is the number of points where $f$ is NOT differential then $\mathrm{m}+\mathrm{a}+\mathrm{b}+\mathrm{c}$ equals :
Answer
(D)
2
16
Let $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, \mathrm{a}>\mathrm{b}$ be an ellipse, whose eccentricity is $\frac{1}{\sqrt{2}}$ and the length of the latusrectum is $\sqrt{14}$. Then the square of the eccentricity of $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is :
Answer
(C)
$${3 \over 2}$$
17
Let $3, a, b, c$ be in A.P. and $3, a-1, b+1, c+9$ be in G.P. Then, the arithmetic mean of $a, b$ and $c$ is :
Answer
(D)
11
18
Let $C: x^2+y^2=4$ and $C^{\prime}: x^2+y^2-4 \lambda x+9=0$ be two circles. If the set of all values of $\lambda$ so that the circles $\mathrm{C}$ and $\mathrm{C}$ intersect at two distinct points, is $\mathrm{R}-[\mathrm{a}, \mathrm{b}]$, then the point $(8 \mathrm{a}+12,16 \mathrm{~b}-20)$ lies on the curve :
Answer
(D)
$6 x^2+y^2=42$
19
If $5 f(x)+4 f\left(\frac{1}{x}\right)=x^2-2, \forall x \neq 0$ and $y=9 x^2 f(x)$, then $y$ is strictly increasing in :
Answer
(B)
$\left(-\frac{1}{\sqrt{5}}, 0\right) \cup\left(\frac{1}{\sqrt{5}}, \infty\right)$
20
If the shortest distance between the lines

$\frac{x-\lambda}{-2}=\frac{y-2}{1}=\frac{z-1}{1}$ and $\frac{x-\sqrt{3}}{1}=\frac{y-1}{-2}=\frac{z-2}{1}$ is 1 , then the sum of all possible values of $\lambda$ is :
Answer
(B)
$2 \sqrt{3}$
21
If $x=x(t)$ is the solution of the differential equation $(t+1) \mathrm{d} x=\left(2 x+(t+1)^4\right) \mathrm{dt}, x(0)=2$, then, $x(1)$ equals _________.
Answer
14
22
The number of elements in the set $\mathrm{S}=\{(x, y, z): x, y, z \in \mathbf{Z}, x+2 y+3 z=42, x, y, z \geqslant 0\}$ equals __________.
Answer
169
23
If the Coefficient of $x^{30}$ in the expansion of $\left(1+\frac{1}{x}\right)^6\left(1+x^2\right)^7\left(1-x^3\right)^8 ; x \neq 0$ is $\alpha$, then $|\alpha|$ equals ___________.
Answer
678
24
Let $3,7,11,15, \ldots, 403$ and $2,5,8,11, \ldots, 404$ be two arithmetic progressions. Then the sum, of the common terms in them, is equal to ___________.
Answer
6699
25
Let $\{x\}$ denote the fractional part of $x$ and $f(x)=\frac{\cos ^{-1}\left(1-\{x\}^2\right) \sin ^{-1}(1-\{x\})}{\{x\}-\{x\}^3}, x \neq 0$. If $\mathrm{L}$ and $\mathrm{R}$ respectively denotes the left hand limit and the right hand limit of $f(x)$ at $x=0$, then $\frac{32}{\pi^2}\left(\mathrm{~L}^2+\mathrm{R}^2\right)$ is equal to ___________.
Answer
18
26
Let the line $\mathrm{L}: \sqrt{2} x+y=\alpha$ pass through the point of the intersection $\mathrm{P}$ (in the first quadrant) of the circle $x^2+y^2=3$ and the parabola $x^2=2 y$. Let the line $\mathrm{L}$ touch two circles $\mathrm{C}_1$ and $\mathrm{C}_2$ of equal radius $2 \sqrt{3}$. If the centres $Q_1$ and $Q_2$ of the circles $C_1$ and $C_2$ lie on the $y$-axis, then the square of the area of the triangle $\mathrm{PQ}_1 \mathrm{Q}_2$ is equal to ___________.
Answer
72
27
Let $\mathrm{P}=\{\mathrm{z} \in \mathbb{C}:|z+2-3 i| \leq 1\}$ and $\mathrm{Q}=\{\mathrm{z} \in \mathbb{C}: z(1+i)+\bar{z}(1-i) \leq-8\}$. Let in $\mathrm{P} \cap \mathrm{Q}$, $|z-3+2 i|$ be maximum and minimum at $z_1$ and $z_2$ respectively. If $\left|z_1\right|^2+2\left|z_2\right|^2=\alpha+\beta \sqrt{2}$, where $\alpha, \beta$ are integers, then $\alpha+\beta$ equals _____________.
Answer
36
28
If $\int\limits_{-\pi / 2}^{\pi / 2} \frac{8 \sqrt{2} \cos x \mathrm{~d} x}{\left(1+\mathrm{e}^{\sin x}\right)\left(1+\sin ^4 x\right)}=\alpha \pi+\beta \log _{\mathrm{e}}(3+2 \sqrt{2})$, where $\alpha, \beta$ are integers, then $\alpha^2+\beta^2$ equals :
Answer
8
29
Let the line of the shortest distance between the lines

$$ \begin{aligned} & \mathrm{L}_1: \overrightarrow{\mathrm{r}}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k}) \text { and } \\\\ & \mathrm{L}_2: \overrightarrow{\mathrm{r}}=(4 \hat{i}+5 \hat{j}+6 \hat{k})+\mu(\hat{i}+\hat{j}-\hat{k}) \end{aligned} $$

intersect $\mathrm{L}_1$ and $\mathrm{L}_2$ at $\mathrm{P}$ and $\mathrm{Q}$ respectively. If $(\alpha, \beta, \gamma)$ is the mid point of the line segment $\mathrm{PQ}$, then $2(\alpha+\beta+\gamma)$ is equal to ____________.
Answer
21
30
Let $A=\{1,2,3, \ldots, 20\}$. Let $R_1$ and $R_2$ two relation on $A$ such that

$R_1=\{(a, b): b$ is divisible by $a\}$

$R_2=\{(a, b): a$ is an integral multiple of $b\}$.

Then, number of elements in $R_1-R_2$ is equal to _____________.
Answer
46