JEE MAIN - Mathematics (2024 - 1st February Morning Shift - No. 4)
$\tan \mathrm{C}=\left(x^{-3}+x^{-2}+x^{-1}\right)^{1 / 2}, 0<\mathrm{A}, \mathrm{B}, \mathrm{C}<\frac{\pi}{2}$, then $\mathrm{A}+\mathrm{B}$ is equal to :
Explanation
To find the sum of two angles in terms of tangent, we can use the tangent addition formula:
$$ \tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B} $$
Let's compute $\tan (A + B)$ using the given $\tan A$ and $\tan B$:
$$ \tan A = \frac{1}{\sqrt{x(x^2+x+1)}} $$
$$ \tan B = \frac{\sqrt{x}}{\sqrt{x^2+x+1}} $$
Now, we can apply the addition formula:
$$ \tan (A + B) = \frac{\frac{1}{\sqrt{x(x^2+x+1)}} + \frac{\sqrt{x}}{\sqrt{x^2+x+1}}}{1 - \frac{1}{\sqrt{x(x^2+x+1)}} \cdot \frac{\sqrt{x}}{\sqrt{x^2+x+1}}} $$
$$ \tan (A + B) = \frac{\frac{1 + \sqrt{x^2}}{\sqrt{x(x^2+x+1)}}}{1 - \frac{1}{(x^2+x+1)}} $$
$$ \tan (A + B) = \frac{\frac{\sqrt{x^2} + 1}{\sqrt{x(x^2+x+1)}}}{\frac{(x^2+x+1) - 1}{(x^2+x+1)}} $$
$$ \tan (A + B) = \frac{(x + 1)\sqrt{(x^2+x+1)}}{(x^2 + x){\sqrt{x}}} $$
$$ \tan (A + B) = \frac{{(x + 1)}\sqrt{(x^2+x+1)}}{x{(x + 1)}{\sqrt{x}}} $$
$$ \tan (A + B) = \frac{\sqrt{x^2+x+1}}{x^{3/2}} $$
Let us first simplify $\tan \mathrm{C}$:$$\tan \mathrm{C} = \sqrt{x^{-3}+x^{-2}+x^{-1}} = \sqrt{\frac{1}{x^3}+\frac{1}{x^2}+\frac{1}{x}} = \sqrt{\frac{1+x+x^2}{x^3}} = \frac{\sqrt{x^2+x+1}}{x^{3/2}}.$$
We see that:
$$ \tan (A + B) = \tan C $$
Since tangent is positive and all the angles $A$, $B$, and $C$ are in the first quadrant, we can say that:
$$ A + B = C $$
Hence, the answer is:
Option A : $C$
Comments (0)
