JEE MAIN - Mathematics (2024 - 1st February Morning Shift - No. 16)
Explanation
Given the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ with $a > b$, the eccentricity $ e $ is given by the formula:
$ e = \sqrt{1 - \left(\frac{b}{a}\right)^2} $
It is provided that the eccentricity $ e $ is $ \frac{1}{\sqrt{2}} $ (given), so we can equate the two expressions for eccentricity:
$ \frac{1}{\sqrt{2}} = \sqrt{1 - \left(\frac{b}{a}\right)^2} $
Squaring both sides to eliminate the square root gives:
$ \frac{1}{2} = 1 - \left(\frac{b}{a}\right)^2 $
$ \left(\frac{b}{a}\right)^2 = 1 - \frac{1}{2} $
$ \left(\frac{b}{a}\right)^2 = \frac{1}{2} $
Taking the square root on both sides:
$ \frac{b}{a} = \frac{1}{\sqrt{2}} $
$ a = b\sqrt{2} $
Now, for the ellipse, the length of the latus rectum is given by the formula:
$ \text{Length of Latus Rectum (L)} = \frac{2b^2}{a} $
It's provided that the length of the latus rectum $ L $ is $ \sqrt{14} $, so substitute the known values to find $ b $:
$ \sqrt{14} = \frac{2b^2}{b\sqrt{2}} = \frac{2b}{\sqrt{2}} $
$ b\sqrt{2} = \sqrt{14} $
$ b^2 = \frac{14}{2} $
$ b^2 = 7 $
And since $ a = b\sqrt{2} $, we can find $ a^2 $:
$ a^2 = (b\sqrt{2})^2 $
$ a^2 = 7 \cdot 2 $
$ a^2 = 14 $
Now we have an ellipse with $ a^2 = 14 $ and $ b^2 = 7 $. The equation of a hyperbola similar to the given ellipse but with the terms subtracted is:
$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $
For the hyperbola, the square of the eccentricity $ e' $ is given by:
$ (e')^2 = 1 + \frac{b^2}{a^2} $
Substitute the values we've found for $ a^2 $ and $ b^2 $ into the formula for the square of the hyperbola's eccentricity:
$ (e')^2 = 1 + \frac{b^2}{a^2} $
$ (e')^2 = 1 + \frac{7}{14} $
$ (e')^2 = 1 + \frac{1}{2} $
$ (e')^2 = \frac{3}{2} $
Therefore, the square of the eccentricity of the hyperbola is $ \frac{3}{2} $, which corresponds to option C.
Comments (0)
