where, $$\lambda$$ $$\in$$ R, has no solution, then
Answer
(B)
$$\lambda$$ = $$-$$7
3
The total number of 5-digit numbers, formed by using the digits 1, 2, 3, 5, 6, 7 without repetition, which are multiple of 6, is :
Answer
(D)
72
4
Let A1, A2, A3, ....... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = $${1 \over {1296}}$$ and A2 + A4 = $${7 \over {36}}$$, then the value of A6 + A8 + A10 is equal to
Answer
(C)
43
5
Let [t] denote the greatest integer less than or equal to t. Then, the value of the integral $$\int\limits_0^1 {[ - 8{x^2} + 6x - 1]dx} $$ is equal to :
Let y = y(x) be the solution of the differential equation $$x(1 - {x^2}){{dy} \over {dx}} + (3{x^2}y - y - 4{x^3}) = 0$$, $$x > 1$$, with $$y(2) = - 2$$. Then y(3) is equal to :
Answer
(A)
$$-$$18
10
The number of real solutions of
$${x^7} + 5{x^3} + 3x + 1 = 0$$ is equal to ____________.
Answer
(B)
1
11
The probability, that in a randomly selected 3-digit number at least two digits are odd, is :
Answer
(A)
$${{19} \over {36}}$$
12
Let R1 and R2 be relations on the set {1, 2, ......., 50} such that
R1 = {(p, pn) : p is a prime and n $$\ge$$ 0 is an integer} and
R2 = {(p, pn) : p is a prime and n = 0 or 1}.
Then, the number of elements in R1 $$-$$ R2 is _______________.
Answer
8
13
The number of real solutions of the equation $${e^{4x}} + 4{e^{3x}} - 58{e^{2x}} + 4{e^x} + 1 = 0$$ is ___________.
Answer
2
14
The mean and standard deviation of 15 observations are found to be 8 and 3 respectively. On rechecking it was found that, in the observations, 20 was misread as 5. Then, the correct variance is equal to _____________.
Answer
17
15
If $$\overrightarrow a = 2\widehat i + \widehat j + 3\widehat k$$, $$\overrightarrow b = 3\widehat i + 3\widehat j + \widehat k$$ and $$\overrightarrow c = {c_1}\widehat i + {c_2}\widehat j + {c_3}\widehat k$$ are coplanar vectors and $$\overrightarrow a \,.\,\overrightarrow c = 5$$, $$\overrightarrow b \bot \overrightarrow c $$, then $$122({c_1} + {c_2} + {c_3})$$ is equal to ___________.
Answer
150
16
A ray of light passing through the point P(2, 3) reflects on the x-axis at point A and the reflected ray passes through the point Q(5, 4). Let R be the point that divides the line segment AQ internally into the ratio 2 : 1. Let the co-ordinates of the foot of the perpendicular M from R on the bisector of the angle PAQ be ($$\alpha$$, $$\beta$$). Then, the value of 7$$\alpha$$ + 3$$\beta$$ is equal to ____________.
Answer
31
17
Let A = {1, a1, a2 ....... a18, 77} be a set of integers with 1 < a1 < a2 < ....... < a18 < 77.
Let the set A + A = {x + y : x, y $$\in$$ A} contain exactly 39 elements. Then, the value of a1 + a2 + ...... + a18 is equal to _____________.
Answer
702
18
The number of positive integers k such that the constant term in the binomial expansion of $${\left( {2{x^3} + {3 \over {{x^k}}}} \right)^{12}}$$, x $$\ne$$ 0 is 28 . l, where l is an odd integer, is ______________.
Answer
2
19
The number of elements in the set {z = a + ib $$\in$$ C : a, b $$\in$$ Z and 1 < | z $$-$$ 3 + 2i | < 4} is __________.