JEE MAIN - Mathematics (2022 - 28th June Morning Shift - No. 2)
If the system of linear equations
$$2x + 3y - z = - 2$$
$$x + y + z = 4$$
$$x - y + |\lambda |z = 4\lambda - 4$$
where, $$\lambda$$ $$\in$$ R, has no solution, then
$$\lambda$$ = 7
$$\lambda$$ = $$-$$7
$$\lambda$$ = 8
$$\lambda$$2 = 1
Explanation
$$\Delta = \left| {\matrix{ 2 & 3 & { - 1} \cr 1 & 1 & 1 \cr 1 & { - 1} & {|\lambda |} \cr } } \right| = 0 \Rightarrow |\lambda | = 7$$
But at $$\lambda = 7,\,{D_x} = {D_y} = {D_z} = 0$$
$${P_1}:2x + 3y - z = - 2$$
$${P_2}:x + y + z = 4$$
$${P_3}:x - y + |\lambda |z = 4\lambda - 4$$
So clearly $$5{P_2} - 2{P_1} = {P_3}$$, so at $$\lambda = 7$$, system of equation is having infinite solutions.
So $$\lambda = - 7$$ is correct answer.
Comments (0)
