JEE MAIN - Mathematics (2022 - 28th June Morning Shift - No. 13)
The number of real solutions of the equation $${e^{4x}} + 4{e^{3x}} - 58{e^{2x}} + 4{e^x} + 1 = 0$$ is ___________.
Answer
2
Explanation
Dividing by e2x
$${e^{2x}} + 4{e^x} - 58 + 4{e^{ - x}} + {e^{ - 2x}} = 0$$
$$ \Rightarrow {({e^x} + {e^{ - x}})^2} + 4({e^x} + {e^{ - x}}) - 60 = 0$$
Let $${e^x} + {e^{ - x}} = t \in [2,\infty )$$
$$ \Rightarrow {t^2} + 4t - 60 = 0$$
$$ \Rightarrow t = 6$$ is only possible solution
$${e^x} + {e^{ - x}} = 6 \Rightarrow {e^{2x}} - 6{e^x} + 1 = 0$$
Let $${e^x} = p$$,
$${p^2} - 6p + 1 = 0$$
$$ \Rightarrow p = {{3 + \sqrt 5 } \over 2}$$ or $${{3 - \sqrt 5 } \over 2}$$
So $$x = \ln \left( {{{3 + \sqrt 5 } \over 2}} \right)$$ or $$\ln \left( {{{3 - \sqrt 5 } \over 2}} \right)$$
Comments (0)
