Let $$\overrightarrow a $$ = $$\widehat i$$ + 2$$\widehat j$$ $$-$$ 3$$\widehat k$$ and $$\overrightarrow b = 2\widehat i$$ $$-$$ 3$$\widehat j$$ + 5$$\widehat k$$. If $$\overrightarrow r $$ $$\times$$ $$\overrightarrow a $$ = $$\overrightarrow b $$ $$\times$$ $$\overrightarrow r $$,
$$\overrightarrow r $$ . $$\left( {\alpha \widehat i + 2\widehat j + \widehat k} \right)$$ = 3 and $$\overrightarrow r \,.\,\left( {2\widehat i + 5\widehat j - \alpha \widehat k} \right)$$ = $$-$$1, $$\alpha$$ $$\in$$ R, then the
value of $$\alpha$$ + $${\left| {\overrightarrow r } \right|^2}$$ is equal to :
Answer
(D)
15
4
If the foot of the perpendicular from point (4, 3, 8) on the line $${L_1}:{{x - a} \over l} = {{y - 2} \over 3} = {{z - b} \over 4}$$, l $$\ne$$ 0 is (3, 5, 7), then the shortest distance between the line L1 and line $${L_2}:{{x - 2} \over 3} = {{y - 4} \over 4} = {{z - 5} \over 5}$$ is equal to :
Answer
(A)
$${1 \over {\sqrt 6 }}$$
5
Consider a rectangle ABCD having 5, 7, 6, 9 points in the interior of the line segments AB, CD, BC, DA respectively. Let $$\alpha$$ be the number of triangles having these points from different sides as vertices and $$\beta$$ be the number of quadrilaterals having these points from different sides as vertices. Then ($$\beta$$ $$-$$ $$\alpha$$) is equal to :
Answer
(A)
717
6
Let f : S $$ \to $$ S where S = (0, $$\infty $$) be a twice differentiable function such that f(x + 1) = xf(x). If g : S $$ \to $$ R be defined as g(x) = loge f(x), then the value of |g''(5) $$-$$ g''(1)| is equal to :
Answer
(D)
$${{205} \over {144}}$$
7
Consider the integral $$I = \int_0^{10} {{{[x]{e^{[x]}}} \over {{e^{x - 1}}}}dx} $$, where [x] denotes the greatest integer less than or equal to x. Then the value of I is equal to :
Answer
(A)
45 (e $$-$$ 1)
8
Let C1 be the curve obtained by the solution of differential equation
$$2xy{{dy} \over {dx}} = {y^2} - {x^2},x > 0$$. Let the curve C2 be the
solution of $${{2xy} \over {{x^2} - {y^2}}} = {{dy} \over {dx}}$$. If both the curves pass through (1, 1), then the area enclosed by the curves C1 and C2 is equal to :
Answer
(D)
$${\pi \over 2}$$ $$-$$ 1
9
Let P(x) = x2 + bx + c be a quadratic polynomial with real coefficients such that $$\int_0^1 {P(x)dx} $$ = 1 and P(x) leaves remainder 5 when it is divided by (x $$-$$ 2). Then the value of 9(b + c) is equal to :
Answer
(C)
7
10
Let A = {2, 3, 4, 5, ....., 30} and '$$ \simeq $$' be an equivalence relation on A $$\times$$ A, defined by (a, b) $$ \simeq $$ (c, d), if and only if ad = bc. Then the number of ordered pairs which satisfy this equivalence relation with ordered pair (4, 3) is equal to :
Answer
(D)
7
11
The least value of |z| where z is complex number which satisfies the inequality $$\exp \left( {{{(|z| + 3)(|z| - 1)} \over {||z| + 1|}}{{\log }_e}2} \right) \ge {\log _{\sqrt 2 }}|5\sqrt 7 + 9i|,i = \sqrt { - 1} $$, is equal to :
Answer
(B)
3
12
Let $$\alpha$$ $$\in$$ R be such that the function $$f(x) = \left\{ {\matrix{
{{{{{\cos }^{ - 1}}(1 - {{\{ x\} }^2}){{\sin }^{ - 1}}(1 - \{ x\} )} \over {\{ x\} - {{\{ x\} }^3}}},} & {x \ne 0} \cr
{\alpha ,} & {x = 0} \cr
} } \right.$$ is continuous at x = 0, where {x} = x $$-$$ [ x ] is the greatest integer less than or equal to x. Then :
Answer
(A)
no such $$\alpha$$ exists
13
Given that the inverse trigonometric functions take principal values only. Then, the number of real values of x which satisfy
Let the lengths of intercepts on x-axis and y-axis made by the circle x2 + y2 + ax + 2ay + c = 0, (a < 0) be 2$${\sqrt 2 }$$ and 2$${\sqrt 5 }$$, respectively. Then the shortest distance from origin to a tangent to this circle which is perpendicular to the line x + 2y = 0, is equal to :
Answer
(B)
$${\sqrt {6} }$$
15
Let A($$-$$1, 1), B(3, 4) and C(2, 0) be given three points. A line y = mx, m > 0, intersects lines AC and BC at point P and Q respectively. Let A1 and A2 be the areas of $$\Delta$$ABC and $$\Delta$$PQC respectively, such that A1 = 3A2, then the value of m is equal to :
Answer
(A)
1
16
Let A denote the event that a 6-digit integer formed by 0, 1, 2, 3, 4, 5, 6 without repetitions, be divisible by 3. Then probability of event A is equal to :
where a, b are non-negative real numbers. If (gof) (x) is continuous for all x $$\in$$ R, then a + b is equal to ____________.
Answer
1
21
Consider the statistics of two sets of observations as follows :
Size
Mean
Variance
Observation I
10
2
2
Observation II
n
3
1
If the variance of the combined set of these two observations is $${{17} \over 9}$$, then the value of n is equal to ___________.
Answer
5
22
Let $$A = \left[ {\matrix{
{{a_1}} \cr
{{a_2}} \cr
} } \right]$$ and $$B = \left[ {\matrix{
{{b_1}} \cr
{{b_2}} \cr
} } \right]$$ be two 2 $$\times$$ 1 matrices with real entries such that A = XB, where