JEE MAIN - Mathematics (2021 - 16th March Evening Shift - No. 13)

Given that the inverse trigonometric functions take principal values only. Then, the number of real values of x which satisfy

$${\sin ^{ - 1}}\left( {{{3x} \over 5}} \right) + {\sin ^{ - 1}}\left( {{{4x} \over 5}} \right) = {\sin ^{ - 1}}x$$ is equal to :
2
0
3
1

Explanation

$${\sin ^{ - 1}}{{3x} \over 5} + {\sin ^{ - 1}}{{4x} \over 5} = {\sin ^{ - 1}}x$$

$${\sin ^{ - 1}}\left( {{{3x} \over 5}\sqrt {1 - {{16{x^2}} \over {25}}} + {{4x} \over 5}\sqrt {1 - {{9{x^2}} \over {25}}} } \right) = {\sin ^{ - 1}}x$$

$${{3x} \over 5}\sqrt {1 - {{16{x^2}} \over {25}}} + {{4x} \over 5}\sqrt {1 - {{9{x^2}} \over {25}}} = x$$

$$x = 0 $$ or $$3\sqrt {25 - 16{x^2}} + 4\sqrt {25 - 9{x^2}} = 25$$

$$4\sqrt {25 - 9{x^2}} = 25 - 3\sqrt {25 - 16{x^2}} $$

Squaring we get

$$16(25 - 9{x^2}) = 625 - 9(25 - 16{x^2}) - 150\sqrt {25 - 16{x^2}} $$

$$400 = 625 + 225 - 150\sqrt {25 - 16{x^2}} $$

$$\sqrt {25 - 16{x^2}} = 3 \Rightarrow 25 - 16{x^2} = 9$$

$$ \Rightarrow {x^2} = 1$$

Put x = 0, 1, $$-$$1 in the original equation

We see that all values satisfy the original equation.

Number of solution = 3

Comments (0)

Advertisement