JEE MAIN - Mathematics (2021 - 16th March Evening Shift - No. 4)

If the foot of the perpendicular from point (4, 3, 8) on the line $${L_1}:{{x - a} \over l} = {{y - 2} \over 3} = {{z - b} \over 4}$$, l $$\ne$$ 0 is (3, 5, 7), then the shortest distance between the line L1 and line $${L_2}:{{x - 2} \over 3} = {{y - 4} \over 4} = {{z - 5} \over 5}$$ is equal to :
$${1 \over {\sqrt 6 }}$$
$${1 \over 2}$$
$${1 \over {\sqrt 3 }}$$
$$\sqrt {{2 \over 3}} $$

Explanation

(3, 5, 7) lie on given line L1

$${{3 - a} \over l} = {3 \over 3} = {{7 - b} \over 4}$$

$${{7 - b} \over 4} = 1 \Rightarrow b = 3$$

$${{3 - a} \over l} = 1 \Rightarrow 3 - a = l$$

M(4, 3, 8)

N(3, 5, 7)

DR'S of MN = (1, $$-$$2, 1)

MN $$ \bot $$ line L1

(1)(l) + ($$-$$2)(3) + 4(1) = 0

$$ \Rightarrow $$ l = 2

a = 1

a = 1, b = 3, l = 2

$${{x - 1} \over 2} = {{y - 2} \over 3} = {{z - 3} \over 4}$$

$${{x - 2} \over 3} = {{y - 4} \over 4} = {{z - 5} \over 5}$$

$$A = \, < 1,2,3 > $$

$$B = \, < 2,4,5 > $$

$$\overrightarrow {AB} = \, < 1,2,2 > $$

$$\overrightarrow p = 2\widehat i + 3\widehat j + 4\widehat k$$

$$\overrightarrow q = 3\widehat i + 4\widehat j + 5\widehat k$$

$$\overrightarrow p \, \times \overrightarrow q = - \widehat i + 2\widehat j - \widehat k$$

Shortest distance = $$\left| {{{\overrightarrow {AB} \,.\,(\overrightarrow p \times \overrightarrow q )} \over {|\overrightarrow p \times \overrightarrow q |}}} \right|\, = {1 \over {\sqrt 6 }}$$

Comments (0)

Advertisement