If the standard deviation of the numbers 2, 3, a and 11 is 3.5, then which of the following is true?
Answer
(B)
3$$a$$2 - 32$$a$$ + 84 = 0
5
Let two fair six-faced dice $$A$$ and $$B$$ be thrown simultaneously. If $${E_1}$$ is the event that die $$A$$ shows up four, $${E_2}$$ is the event that die $$B$$ shows up two and $${E_3}$$ is the event that the sum of numbers on both dice is odd, then which of the following statements is $$NOT$$ true?
Answer
(D)
$${E_1},$$ $${E_2}$$ and $${E_3}$$ are independent.
6
If a curve $$y=f(x)$$ passes through the point $$(1,-1)$$ and satisfies the differential equation, $$y(1+xy) dx=x$$ $$dy$$, then $$f\left( { - {1 \over 2}} \right)$$ is equal to :
Answer
(B)
$${4 \over 5}$$
7
The area (in sq. units) of the region $$\left\{ {\left( {x,y} \right):{y^2} \ge 2x\,\,\,and\,\,\,{x^2} + {y^2} \le 4x,x \ge 0,y \ge 0} \right\}$$ is :
Answer
(D)
$$\pi - {8 \over 3}$$
8
The integral $$\int {{{2{x^{12}} + 5{x^9}} \over {{{\left( {{x^5} + {x^3} + 1} \right)}^3}}}} dx$$ is equal to :
$$\matrix{
{x + \lambda y - z = 0} \cr
{\lambda x - y - z = 0} \cr
{x + y - \lambda z = 0} \cr
} $$
has a non-trivial solution for :
Answer
(D)
exactly three values of $$\lambda .$$
10
If $$A = \left[ {\matrix{
{5a} & { - b} \cr
3 & 2 \cr
} } \right]$$ and $$A$$ adj $$A=A$$ $${A^T},$$ then $$5a+b$$ is equal to :
Answer
(D)
$$5$$
11
A wire of length $$2$$ units is cut into two parts which are bent respectively to form a square of side $$=x$$ units and a circle of radius $$=r$$ units. If the sum of the areas of the square and the circle so formed is minimum, then:
Answer
(A)
$$x=2r$$
12
The eccentricity of the hyperbola whose length of the latus rectum is equal to $$8$$ and the length of its conjugate axis is equal to half of the distance between its foci, is :
Answer
(A)
$${2 \over {\sqrt 3 }}$$
13
If one of the diameters of the circle, given by the equation, $${x^2} + {y^2} - 4x + 6y - 12 = 0,$$ is a chord of a circle $$S$$, whose centre is at $$(-3, 2)$$, then the radius of $$S$$ is :
Answer
(D)
$$5\sqrt 3 $$
14
Two sides of a rhombus are along the lines, $$x - y + 1 = 0$$ and $$7x - y - 5 = 0$$. If its diagonals intersect at $$(-1, -2)$$, then which one of the following is a vertex of this rhombus?
If the $${2^{nd}},{5^{th}}\,and\,{9^{th}}$$ terms of a non-constant A.P. are in G.P., then the common ratio of this G.P. is :
Answer
(D)
$${4 \over 3}$$
16
If all the words (with or without meaning) having five letters,formed using the letters of the word SMALL and arranged as in a dictionary, then the position of the word SMALL is :
Answer
(D)
$${58^{th}}$$
17
The sum of all real values of $$x$$ satisfying the equation $${\left( {{x^2} - 5x + 5} \right)^{{x^2} + 4x - 60}}\, = 1$$ is :
Answer
(C)
$$3$$
18
If $f(x)+2 f\left(\frac{1}{x}\right)=3 x, x \neq 0$, and $\mathrm{S}=\{x \in \mathbf{R}: f(x)=f(-x)\}$; then $\mathrm{S}:$