JEE MAIN - Mathematics (2016 (Offline) - No. 14)
Two sides of a rhombus are along the lines, $$x - y + 1 = 0$$ and $$7x - y - 5 = 0$$. If its diagonals intersect at $$(-1, -2)$$, then which one of the following is a vertex of this rhombus?
$$\left( {{{ 1} \over 3}, - {8 \over 3}} \right)$$
$$\left( - {{{ 10} \over 3}, - {7 \over 3}} \right)$$
$$\left( { - 3, - 9} \right)$$
$$\left( { - 3, - 8} \right)$$
Explanation
_en_14_1.png)
Let other two sides of rhombus are
$$x - y + \lambda = 0$$
and $$7x - y + \mu = 0$$
then $$O$$ is equidistant from $$AB$$ and $$DC$$ and from $$AD$$ and $$BC$$
$$\therefore$$ $$\left| { - 1 + 2 + 1} \right| = \left| { - 1 + 2 + \lambda } \right| \Rightarrow \lambda = - 3$$
and $$\left| { - 7 + 2 - 5} \right| = \left| { - 7 + 2 + \mu } \right| \Rightarrow \mu = 15$$
$$\therefore$$ Other two sides are $$x-y-3=0$$ and $$7x-y+15=0$$
On solving the equations of sides pairwise, we get
the vertices as $$\left( {{1 \over 3},{{ - 8} \over 3}} \right),\left( {1,2} \right),\left( {{{ - 7} \over 3},{{ - 4} \over 3}} \right),\left( { - 3, - 6} \right)$$
Comments (0)
