JEE MAIN - Mathematics (2016 (Offline) - No. 2)

For $$x \in \,R,\,\,f\left( x \right) = \left| {\log 2 - \sin x} \right|\,\,$$

and $$\,\,g\left( x \right) = f\left( {f\left( x \right)} \right),\,\,$$ then :
$$g$$ is not differentiable at $$x=0$$
$$g'\left( 0 \right) = \cos \left( {\log 2} \right)$$
$$g'\left( 0 \right) = - \cos \left( {\log 2} \right)$$
$$g$$ is differentiable at $$x=0$$ and $$g'\left( 0 \right) = - \sin \left( {\log 2} \right)$$

Explanation

$$g\left( x \right) = f\left( {f\left( x \right)} \right)$$

In the neighbourhood of $$x=0,$$

$$f\left( x \right) = \left| {\log 2 - \sin \,x} \right| = \left( {\log 2 - \sin x} \right)$$

$$\therefore$$ $$g\left( x \right) = \left| {\log 2 - \sin \left. {\left| {\log 2 - \sin x} \right|} \right|} \right.$$

$$ = \left( {\log 2 - \sin \left( {\log 2 - \sin x} \right)} \right)$$

$$\therefore$$ $$g(x)$$ is differentiable

and $$g'\left( x \right) = - \cos \left( {\log 2 - \sin x} \right)\left( { - \cos x} \right)$$

$$ \Rightarrow g'\left( 0 \right) = \cos \left( {\log 2} \right)$$

Comments (0)

Advertisement