$${{\sin \,3\alpha } \over {\cos 2\alpha }}$$ is
Column $${\rm I}$$
(A) positive
(B) negative
Column $${\rm I}$$$${\rm I}$$
(p) $$\left( {{{13\pi } \over {48}},{{14\pi } \over {48}}} \right)$$
(q) $$\left( {{{14\pi } \over {48}},\,{{18\pi } \over {48}}} \right)$$
(r) $$\left( {{{18\pi } \over {48}},\,{{23\pi } \over {48}}} \right)$$
(s) $$\left( {0,\,{\pi \over 2}} \right)$$
Options:-
Let the functions defined in column $$I$$ have domain $$\left( { - {\pi \over 2},{\pi \over 2}} \right)$$
$$\,\,\,\,$$Column $$I$$
(A) $$x + \sin x$$
(B) $$\sec x$$
$$\,\,\,\,$$Column $$II$$
(p) increasing
(q) decreasing
(r) neither increasing nor decreasing