JEE Advance - Mathematics (1992 - No. 9)
If $$\sum\limits_{r = 0}^{2n} {{a_r}{{\left( {x - 2} \right)}^r}\,\, = \sum\limits_{r = 0}^{2n} {{b_r}{{\left( {x - 3} \right)}^r}} } $$ and $${a_k} = 1$$ for all $$k \ge n,$$ then show that $${b_n} = {}^{2n + 1}{C_{n + 1}}$$
${b_n} = {}^{2n}{C_{n}}$
${b_n} = {}^{2n}{C_{n+1}}$
${b_n} = {}^{2n+1}{C_{n}}$
${b_n} = {}^{2n+1}{C_{n+1}}$
${b_n} = {}^{2n-1}{C_{n-1}}$
Comments (0)
