JEE MAIN - Mathematics (2025 - 4th April Morning Shift)
1
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying $f(0)=1$ and $f(2 x)-f(x)=x$ for all $x \in \mathbb{R}$. If $\lim _\limits{n \rightarrow \infty}\left\{f(x)-f\left(\frac{x}{2^n}\right)\right\}=G(x)$, then $\sum_\limits{r=1}^{10} G\left(r^2\right)$ is equal to
Answer
(C)
385
2
Let the shortest distance between the lines $\frac{x-3}{3}=\frac{y-\alpha}{-1}=\frac{z-3}{1}$ and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-\beta}{4}$ be $3 \sqrt{30}$. Then the positive value of $5 \alpha+\beta$ is
Answer
(D)
46
3
Let $A=\{1,6,11,16, \ldots\}$ and $B=\{9,16,23,30, \ldots\}$ be the sets consisting of the first 2025 terms of two arithmetic progressions. Then $n(A \cup B)$ is
Answer
(D)
3761
4
The length of the latus-rectum of the ellipse, whose foci are $(2,5)$ and $(2,-3)$ and eccentricity is $\frac{4}{5}$, is
Answer
(B)
$\frac{18}{5}$
5
Consider the equation $x^2+4 x-n=0$, where $n \in[20,100]$ is a natural number. Then the number of all distinct values of $n$, for which the given equation has integral roots, is equal to
Answer
(A)
6
6
Consider the sets $A=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: x^2+y^2=25\right\}, B=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: x^2+9 y^2=144\right\}$, $C=\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: x^2+y^2 \leq 4\right\}$ and $D=A \cap B$. The total number of one-one functions from the set $D$ to the set $C$ is:
Answer
(C)
17160
7
$1+3+5^2+7+9^2+\ldots$ upto 40 terms is equal to
Answer
(B)
41880
8
If $10 \sin ^4 \theta+15 \cos ^4 \theta=6$, then the value of $\frac{27 \operatorname{cosec}^6 \theta+8 \sec ^6 \theta}{16 \sec ^8 \theta}$ is
Answer
(A)
$\frac{2}{5}$
9
The value of $\int_\limits{-1}^1 \frac{(1+\sqrt{|x|-x}) e^x+(\sqrt{|x|-x}) e^{-x}}{e^x+e^{-x}} d x$ is equal to
Answer
(A)
$1+\frac{2 \sqrt{2}}{3}$
10
Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a differentiable function such that
$f(x)=1-2 x+\int_0^x e^{x-t} f(t) d t$ for all $x \in[0, \infty)$.
Then the area of the region bounded by $y=f(x)$ and the coordinate axes is
Answer
(D)
$\frac{1}{2}$
11
The probability, of forming a 12 persons committee from 4 engineers, 2 doctors and 10 professors containing at least 3 engineers and at least 1 doctor, is
Answer
(A)
$\frac{129}{182}$
12
A box contains 10 pens of which 3 are defective. A sample of 2 pens is drawn at random and let $X$ denote the number of defective pens. Then the variance of $X$ is
Answer
(D)
$\frac{28}{75}$
13
Consider two vectors
$\vec{u}=3 \hat{i}-\hat{j}$ and $\vec{v}=2 \hat{i}+\hat{j}-\lambda \hat{k}, \lambda>0$. The angle between them is given by $\cos ^{-1}\left(\frac{\sqrt{5}}{2 \sqrt{7}}\right)$.
Let $\vec{v}=\vec{v}_1+\overrightarrow{v_2}$, where $\vec{v}_1$ is parallel to $\vec{u}$ and $\overrightarrow{v_2}$ is perpendicular to $\vec{u}$. Then the value $\left|\overrightarrow{v_1}\right|^2+\left|\overrightarrow{v_2}\right|^2$ is equal to
Answer
(D)
14
14
For an integer $n \geq 2$, if the arithmetic mean of all coefficients in the binomial expansion of $(x+y)^{2 n-3}$ is 16 , then the distance of the point $\mathrm{P}\left(2 n-1, n^2-4 n\right)$ from the line $x+y=8$ is
Answer
(D)
$3 \sqrt{2}$
15
Let $A$ and $B$ be two distinct points on the line $L: \frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$. Both $A$ and $B$ are at a distance $2 \sqrt{17}$ from the foot of perpendicular drawn from the point $(1,2,3)$ on the line $L$. If $O$ is the origin, then $\overrightarrow{O A} \cdot \overrightarrow{O B}$ is equal to
Answer
(C)
47
16
Let $f, g:(1, \infty) \rightarrow \mathbb{R}$ be defined as $f(x)=\frac{2 x+3}{5 x+2}$ and $g(x)=\frac{2-3 x}{1-x}$. If the range of the function fog: $[2,4] \rightarrow \mathbb{R}$ is $[\alpha, \beta]$, then $\frac{1}{\beta-\alpha}$ is equal to
Answer
(A)
56
17
If $\lim _\limits{x \rightarrow 1^{+}} \frac{(x-1)(6+\lambda \cos (x-1))+\mu \sin (1-x)}{(x-1)^3}=-1$, where $\lambda, \mu \in \mathbb{R}$, then $\lambda+\mu$ is equal to
Answer
(C)
18
18
Let the three sides of a triangle are on the lines $4 x-7 y+10=0, x+y=5$ and $7 x+4 y=15$. Then the distance of its orthocentre from the orthocentre of the tringle formed by the lines $x=0, y=0$ and $x+y=1$ is
Answer
(C)
$\sqrt{5}$
19
In the expansion of $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^n, n \in \mathrm{~N}$, if the ratio of $15^{\text {th }}$ term from the beginning to the $15^{\text {th }}$ term from the end is $\frac{1}{6}$, then the value of ${ }^n \mathrm{C}_3$ is
Answer
(B)
2300
20
Considering the principal values of the inverse trigonometric functions, $\sin ^{-1}\left(\frac{\sqrt{3}}{2} x+\frac{1}{2} \sqrt{1-x^2}\right),-\frac{1}{2}< x<\frac{1}{\sqrt{2}}$, is equal to
Answer
(C)
$\frac{\pi}{6}+\sin ^{-1} x$
21
Let $C$ be the circle $x^2+(y-1)^2=2, E_1$ and $E_2$ be two ellipses whose centres lie at the origin and major axes lie on x -axis and y -axis respectively. Let the straight line $x+y=3$ touch the curves $C, E_1$ and $E_2$ at $P\left(x_1, y_1\right), Q\left(x_2, y_2\right)$ and $R\left(x_3, y_3\right)$ respectively. Given that $P$ is the mid point of the line segment $Q R$ and $P Q=\frac{2 \sqrt{2}}{3}$, the value of $9\left(x_1 y_1+x_2 y_2+x_3 y_3\right)$ is equal to _______.
Answer
46
22
Let $m$ and $n$ be the number of points at which the function $f(x)=\max \left\{x, x^3, x^5, \ldots x^{21}\right\}, x \in \mathbb{R}$, is not differentiable and not continuous, respectively. Then $m+n$ is equal to _________.
Answer
3
23
Let $A=\left[\begin{array}{ccc}\cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta\end{array}\right]$. If for some $\theta \in(0, \pi), A^2=A^T$, then the sum of the diagonal elements of the matrix $(\mathrm{A}+\mathrm{I})^3+(\mathrm{A}-\mathrm{I})^3-6 \mathrm{~A}$ is equal to _________ .
Answer
6
24
If the area of the region $\{(x, y):|x-5| \leq y \leq 4 \sqrt{x}\}$ is $A$, then $3 A$ is equal to _________.
Answer
368
25
Let $\mathrm{A}=\{z \in \mathrm{C}:|z-2-i|=3\}, \mathrm{B}=\{z \in \mathrm{C}: \operatorname{Re}(z-i z)=2\}$ and $\mathrm{S}=\mathrm{A} \cap \mathrm{B}$. Then $\sum_{z \in S}|z|^2$ is equal to _________.