JEE MAIN - Mathematics (2025 - 4th April Morning Shift - No. 13)
Explanation
$$\begin{aligned} & \vec{u} \cdot \vec{v}=|u| \cdot|v| \cdot \cos \theta \\ & \Rightarrow 6-1=\sqrt{10} \cdot \sqrt{5+\lambda^2} \cdot \frac{\sqrt{5}}{2 \sqrt{7}} \\ & \Rightarrow 1=\sqrt{2} \cdot \sqrt{5+\lambda^2} \cdot \frac{1}{2 \sqrt{7}} \\ & \Rightarrow 14=5+\lambda^2 \\ & \Rightarrow \lambda^2=9 \\ & \Rightarrow \lambda=3 \\ & v_1=k \vec{u} \\ & \vec{v}=\vec{v}_1+\vec{v}_2 \\ & \Rightarrow \vec{v}=k \vec{u}+\vec{v}_2 \\ & \vec{v} \cdot \vec{u}=k \cdot|\vec{u}|^2 \end{aligned}$$
$$\begin{aligned} & \Rightarrow 5=k \cdot 10 \Rightarrow k=\frac{1}{2} \\ & \therefore \quad \vec{v}_1=\frac{\vec{u}}{2}=\frac{3 \hat{i}}{2}-\frac{\hat{j}}{2} \\ & \left|\vec{v}_1\right|^2=\frac{10}{4} \\ & \vec{v}_2=\vec{v}-\vec{v}_1 \\ & =\frac{1}{2} \hat{i}+\frac{3 \hat{j}}{2}-3 \hat{k} \\ & \left|\vec{v}_2\right|^2=\frac{10}{4}+9 \\ & \left|\vec{v}_1\right|^2+\left|\vec{v}_2\right|^2=\frac{10}{4}+\frac{10}{4}+9=14 \end{aligned}$$
Comments (0)
