JEE MAIN - Mathematics (2024 - 5th April Evening Shift)
1
Let the circle $$C_1: x^2+y^2-2(x+y)+1=0$$ and $$\mathrm{C_2}$$ be a circle having centre at $$(-1,0)$$ and radius 2 . If the line of the common chord of $$\mathrm{C}_1$$ and $$\mathrm{C}_2$$ intersects the $$\mathrm{y}$$-axis at the point $$\mathrm{P}$$, then the square of the distance of P from the centre of $$\mathrm{C_1}$$ is:
Answer
(C)
2
2
Let $$f, g: \mathbf{R} \rightarrow \mathbf{R}$$ be defined as :
$$f(x)=|x-1| \text { and } g(x)= \begin{cases}\mathrm{e}^x, & x \geq 0 \\ x+1, & x \leq 0 .\end{cases}$$
Then the function $$f(g(x))$$ is
Answer
(A)
neither one-one nor onto.
3
Let ABCD and AEFG be squares of side 4 and 2 units, respectively. The point E is on the line segment AB and the point F is on the diagonal AC. Then the radius r of the circle passing through the point F and touching the line segments BC and CD satisfies :
Answer
(D)
$$\mathrm{r}^2-8 \mathrm{r}+8=0$$
4
Let $$(\alpha, \beta, \gamma)$$ be the image of the point $$(8,5,7)$$ in the line $$\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-2}{5}$$. Then $$\alpha+\beta+\gamma$$ is equal to :
Answer
(D)
14
5
Let $$S_1=\{z \in \mathbf{C}:|z| \leq 5\}, S_2=\left\{z \in \mathbf{C}: \operatorname{Im}\left(\frac{z+1-\sqrt{3} i}{1-\sqrt{3} i}\right) \geq 0\right\}$$ and $$S_3=\{z \in \mathbf{C}: \operatorname{Re}(z) \geq 0\}$$. Then the area of the region $$S_1 \cap S_2 \cap S_3$$ is :
Answer
(C)
$$\frac{125 \pi}{12}$$
6
If the constant term in the expansion of $$\left(\frac{\sqrt[5]{3}}{x}+\frac{2 x}{\sqrt[3]{5}}\right)^{12}, x \neq 0$$, is $$\alpha \times 2^8 \times \sqrt[5]{3}$$, then $$25 \alpha$$ is equal to :
Answer
(C)
693
7
Let $$\vec{a}=2 \hat{i}+5 \hat{j}-\hat{k}, \vec{b}=2 \hat{i}-2 \hat{j}+2 \hat{k}$$ and $$\vec{c}$$ be three vectors such that $$(\vec{c}+\hat{i}) \times(\vec{a}+\vec{b}+\hat{i})=\vec{a} \times(\vec{c}+\hat{i})$$. If $$\vec{a} \cdot \vec{c}=-29$$, then $$\vec{c} \cdot(-2 \hat{i}+\hat{j}+\hat{k})$$ is equal to:
Answer
(C)
5
8
Let $$\mathrm{A}(-1,1)$$ and $$\mathrm{B}(2,3)$$ be two points and $$\mathrm{P}$$ be a variable point above the line $$\mathrm{AB}$$ such that the area of $$\triangle \mathrm{PAB}$$ is 10. If the locus of $$\mathrm{P}$$ is $$\mathrm{a} x+\mathrm{by}=15$$, then $$5 \mathrm{a}+2 \mathrm{~b}$$ is :
Answer
(A)
$$-\frac{12}{5}$$
9
The values of $$m, n$$, for which the system of equations
has infinitely many solutions, satisfy the equation :
Answer
(C)
$$\mathrm{m}^2+\mathrm{n}^2-\mathrm{mn}=39$$
10
If $$y(\theta)=\frac{2 \cos \theta+\cos 2 \theta}{\cos 3 \theta+4 \cos 2 \theta+5 \cos \theta+2}$$, then at $$\theta=\frac{\pi}{2}, y^{\prime \prime}+y^{\prime}+y$$ is equal to :
Answer
(D)
2
11
Let $$\beta(\mathrm{m}, \mathrm{n})=\int_\limits0^1 x^{\mathrm{m}-1}(1-x)^{\mathrm{n}-1} \mathrm{~d} x, \mathrm{~m}, \mathrm{n}>0$$. If $$\int_\limits0^1\left(1-x^{10}\right)^{20} \mathrm{~d} x=\mathrm{a} \times \beta(\mathrm{b}, \mathrm{c})$$, then $$100(\mathrm{a}+\mathrm{b}+\mathrm{c})$$ equals _________.
Answer
(D)
2120
12
Let ,$$f:[-1,2] \rightarrow \mathbf{R}$$ be given by $$f(x)=2 x^2+x+\left[x^2\right]-[x]$$, where $$[t]$$ denotes the greatest integer less than or equal to $$t$$. The number of points, where $$f$$ is not continuous, is :
Answer
(C)
4
13
Let the set $$S=\{2,4,8,16, \ldots, 512\}$$ be partitioned into 3 sets $$A, B, C$$ with equal number of elements such that $$\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}=\mathrm{S}$$ and $$\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{C}=\mathrm{A} \cap \mathrm{C}=\phi$$. The maximum number of such possible partitions of $$S$$ is equal to:
Answer
(D)
1680
14
The coefficients $$\mathrm{a}, \mathrm{b}, \mathrm{c}$$ in the quadratic equation $$\mathrm{a} x^2+\mathrm{bx}+\mathrm{c}=0$$ are from the set $$\{1,2,3,4,5,6\}$$. If the probability of this equation having one real root bigger than the other is p, then 216p equals :
Answer
(A)
38
15
Let $$\alpha \beta \neq 0$$ and $$A=\left[\begin{array}{rrr}\beta & \alpha & 3 \\ \alpha & \alpha & \beta \\ -\beta & \alpha & 2 \alpha\end{array}\right]$$. If $$B=\left[\begin{array}{rrr}3 \alpha & -9 & 3 \alpha \\ -\alpha & 7 & -2 \alpha \\ -2 \alpha & 5 & -2 \beta\end{array}\right]$$ is the matrix of cofactors of the elements of $$A$$, then $$\operatorname{det}(A B)$$ is equal to :
Answer
(D)
216
16
For $$x \geqslant 0$$, the least value of $$\mathrm{K}$$, for which $$4^{1+x}+4^{1-x}, \frac{\mathrm{K}}{2}, 16^x+16^{-x}$$ are three consecutive terms of an A.P., is equal to :
Answer
(A)
10
17
The area enclosed between the curves $$y=x|x|$$ and $$y=x-|x|$$ is :
Answer
(C)
$$\frac{4}{3}$$
18
60 words can be made using all the letters of the word $$\mathrm{BHBJO}$$, with or without meaning. If these words are written as in a dictionary, then the $$50^{\text {th }}$$ word is:
Answer
(A)
OBBJH
19
Consider three vectors $$\vec{a}, \vec{b}, \vec{c}$$. Let $$|\vec{a}|=2,|\vec{b}|=3$$ and $$\vec{a}=\vec{b} \times \vec{c}$$. If $$\alpha \in\left[0, \frac{\pi}{3}\right]$$ is the angle between the vectors $$\vec{b}$$ and $$\vec{c}$$, then the minimum value of $$27|\vec{c}-\vec{a}|^2$$ is equal to:
Answer
(A)
124
20
The differential equation of the family of circles passing through the origin and having centre at the line $$y=x$$ is :
Answer
(D)
$$\left(x^2-y^2+2 x y\right) \mathrm{d} x=\left(x^2-y^2-2 x y\right) \mathrm{d} y$$
21
Let $$y=y(x)$$ be the solution of the differential equation
Then the area enclosed by the curve $$f(x)=y(x) \mathrm{e}^{-\frac{1}{\left(1+x^2\right)}}$$ and the line $$y-x=4$$ is ________.
Answer
18
22
Let the mean and the standard deviation of the probability distribution
$$\mathrm{X}$$
$$\alpha$$
1
0
$$-$$3
$$\mathrm{P(X)}$$
$$\frac{1}{3}$$
$$\mathrm{K}$$
$$\frac{1}{6}$$
$$\frac{1}{4}$$
be $$\mu$$ and $$\sigma$$, respectively. If $$\sigma-\mu=2$$, then $$\sigma+\mu$$ is equal to ________.
Answer
5
23
Let the maximum and minimum values of $$\left(\sqrt{8 x-x^2-12}-4\right)^2+(x-7)^2, x \in \mathbf{R}$$ be $$\mathrm{M}$$ and $$\mathrm{m}$$, respectively. Then $$\mathrm{M}^2-\mathrm{m}^2$$ is equal to _________.
Answer
1600
24
Let the point $$(-1, \alpha, \beta)$$ lie on the line of the shortest distance between the lines $$\frac{x+2}{-3}=\frac{y-2}{4}=\frac{z-5}{2}$$ and $$\frac{x+2}{-1}=\frac{y+6}{2}=\frac{z-1}{0}$$. Then $$(\alpha-\beta)^2$$ is equal to _________.
Answer
25
25
If $$1+\frac{\sqrt{3}-\sqrt{2}}{2 \sqrt{3}}+\frac{5-2 \sqrt{6}}{18}+\frac{9 \sqrt{3}-11 \sqrt{2}}{36 \sqrt{3}}+\frac{49-20 \sqrt{6}}{180}+\ldots$$ upto $$\infty=2+\left(\sqrt{\frac{b}{a}}+1\right) \log _e\left(\frac{a}{b}\right)$$, where a and b are integers with $$\operatorname{gcd}(a, b)=1$$, then $$\mathrm{11 a+18 b}$$ is equal to __________.
Answer
76
26
Let $$\mathrm{a}>0$$ be a root of the equation $$2 x^2+x-2=0$$. If $$\lim _\limits{x \rightarrow \frac{1}{a}} \frac{16\left(1-\cos \left(2+x-2 x^2\right)\right)}{(1-a x)^2}=\alpha+\beta \sqrt{17}$$, where $$\alpha, \beta \in Z$$, then $$\alpha+\beta$$ is equal to _________.
Answer
170
27
If $$f(t)=\int_\limits0^\pi \frac{2 x \mathrm{~d} x}{1-\cos ^2 \mathrm{t} \sin ^2 x}, 0<\mathrm{t}<\pi$$, then the value of $$\int_\limits0^{\frac{\pi}{2}} \frac{\pi^2 \mathrm{dt}}{f(\mathrm{t})}$$ equals __________.
Answer
1
28
The number of real solutions of the equation $$x|x+5|+2|x+7|-2=0$$ is __________.
Answer
3
29
The number of solutions of $$\sin ^2 x+\left(2+2 x-x^2\right) \sin x-3(x-1)^2=0$$, where $$-\pi \leq x \leq \pi$$, is ________.
Answer
2
30
Let a line perpendicular to the line $$2 x-y=10$$ touch the parabola $$y^2=4(x-9)$$ at the point P. The distance of the point P from the centre of the circle $$x^2+y^2-14 x-8 y+56=0$$ is __________.