JEE MAIN - Mathematics (2024 - 5th April Evening Shift - No. 25)

If $$1+\frac{\sqrt{3}-\sqrt{2}}{2 \sqrt{3}}+\frac{5-2 \sqrt{6}}{18}+\frac{9 \sqrt{3}-11 \sqrt{2}}{36 \sqrt{3}}+\frac{49-20 \sqrt{6}}{180}+\ldots$$ upto $$\infty=2+\left(\sqrt{\frac{b}{a}}+1\right) \log _e\left(\frac{a}{b}\right)$$, where a and b are integers with $$\operatorname{gcd}(a, b)=1$$, then $$\mathrm{11 a+18 b}$$ is equal to __________.
Answer
76

Explanation

$$\begin{aligned} & S=1+\frac{\sqrt{3}-\sqrt{2}}{2 \sqrt{3}}+\frac{5-2 \sqrt{6}}{18}+\frac{9 \sqrt{3}-11 \sqrt{2}}{36 \sqrt{3}}+\ldots \infty \\\\ & =1+\frac{(1-\sqrt{2} / \sqrt{3})}{2}+\frac{(1-\sqrt{2} / \sqrt{3})^2}{6}+\frac{(1-\sqrt{2} / \sqrt{3})^3}{12}+\ldots \infty \end{aligned}$$

$$\text { let } 1-\frac{\sqrt{2}}{\sqrt{3}}=a$$

$$\begin{aligned} & S=1+\frac{a}{2}+\frac{a^2}{6}+\frac{a^3}{12}+\ldots \\\\ & =1+\left(1-\frac{1}{2}\right) a+\left(\frac{1}{2}-\frac{1}{3}\right) a^2+\left(\frac{1}{3}-\frac{1}{4}\right) a^3+\ldots \\\\ & =1+\left(a+\frac{a^2}{2}+\frac{a^3}{3} \ldots \infty\right)+\frac{1}{a}\left(\frac{-a^2}{2}-\frac{a^3}{3}-\frac{a^4}{4} \ldots \infty\right) \\\\ & =-\ln (1-a)+\frac{1}{a}\left(-a-\frac{a^2}{2}-\frac{a^3}{3} \ldots \infty\right)+2 \\\\ & =-\ln (1-a)+\frac{1}{a} \ln (1-a)+2 \\\\ & =2+\left(\frac{1}{a}-1\right) \ln (1-a) \\\\ & =2+\left(\frac{\sqrt{3}}{\sqrt{3}-\sqrt{2}}-1\right) \ln \left(1-1+\sqrt{\frac{2}{3}}\right) \\\\ & =2+\frac{\sqrt{2}}{\sqrt{3}}-\sqrt{2} \ln \sqrt{\frac{2}{3}} \\\\ & =2+\left(\frac{\sqrt{6}+2}{1} \cdot \frac{1}{2} \ln \frac{2}{3}\right) \\\\ & \therefore 2+\left(\sqrt{\frac{3}{2}}+1\right) \ln \frac{2}{3} \\\\ & \therefore 11 a+18 b=76 \end{aligned}$$

Comments (0)

Advertisement