JEE MAIN - Mathematics (2024 - 1st February Evening Shift)
1
If the domain of the function
$f(x)=\frac{\sqrt{x^2-25}}{\left(4-x^2\right)}+\log _{10}\left(x^2+2 x-15\right)$ is $(-\infty, \alpha) \cup[\beta, \infty)$, then $\alpha^2+\beta^3$ is equal to :
Answer
(D)
150
2
If $z$ is a complex number such that $|z| \leqslant 1$, then the minimum value of $\left|z+\frac{1}{2}(3+4 i)\right|$ is :
Answer
(C)
$\frac{3}{2}$
3
Consider a $\triangle A B C$ where $A(1,3,2), B(-2,8,0)$ and $C(3,6,7)$. If the angle bisector of $\angle B A C$ meets
the line $B C$ at $D$, then the length of the projection of the vector $\overrightarrow{A D}$ on the vector $\overrightarrow{A C}$ is :
Answer
(A)
$\frac{37}{2 \sqrt{38}}$
4
Consider the relations $R_1$ and $R_2$ defined as $a R_1 b \Leftrightarrow a^2+b^2=1$ for all $a, b \in \mathbf{R}$ and $(a, b) R_2(c, d) \Leftrightarrow$ $a+d=b+c$ for all $(a, b),(c, d) \in \mathbf{N} \times \mathbf{N}$. Then :
Answer
(C)
Only $R_2$ is an equivalence relation
5
Let the system of equations $x+2 y+3 z=5,2 x+3 y+z=9,4 x+3 y+\lambda z=\mu$ have infinite number of solutions. Then $\lambda+2 \mu$ is equal to :
Answer
(B)
17
6
If $\int\limits_0^{\frac{\pi}{3}} \cos ^4 x \mathrm{~d} x=\mathrm{a} \pi+\mathrm{b} \sqrt{3}$, where $\mathrm{a}$ and $\mathrm{b}$ are rational numbers, then $9 \mathrm{a}+8 \mathrm{b}$ is equal to :
Answer
(A)
2
7
Let $\alpha$ and $\beta$ be the roots of the equation $p x^2+q x-r=0$, where $p \neq 0$. If $p, q$ and $r$ be the consecutive terms of a non constant G.P. and $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{3}{4}$, then the value of $(\alpha-\beta)^2$ is :
Answer
(D)
$\frac{80}{9}$
8
Let Ajay will not appear in JEE exam with probability $\mathrm{p}=\frac{2}{7}$, while both Ajay and Vijay will appear in the exam with probability $\mathrm{q}=\frac{1}{5}$. Then the probability, that Ajay will appear in the exam and Vijay will not appear is :
Answer
(D)
$\frac{18}{35}$
9
Let $\mathrm{P}$ be a point on the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$. Let the line passing through $\mathrm{P}$ and parallel to $y$-axis meet the circle $x^2+y^2=9$ at point $\mathrm{Q}$ such that $\mathrm{P}$ and $\mathrm{Q}$ are on the same side of the $x$-axis. Then, the eccentricity of the locus of the point $R$ on $P Q$ such that $P R: R Q=4: 3$ as $P$ moves on the ellipse, is :
Answer
(C)
$\frac{\sqrt{13}}{7}$
10
Consider 10 observations $x_1, x_2, \ldots, x_{10}$ such that $\sum\limits_{i=1}^{10}\left(x_i-\alpha\right)=2$ and $\sum\limits_{i=1}^{10}\left(x_i-\beta\right)^2=40$, where $\alpha, \beta$ are positive integers. Let the mean and the variance of the observations be $\frac{6}{5}$ and $\frac{84}{25}$ respectively. Then $\frac{\beta}{\alpha}$ is equal to :
Answer
(A)
2
11
Let $f(x)=\left|2 x^2+5\right| x|-3|, x \in \mathbf{R}$. If $\mathrm{m}$ and $\mathrm{n}$ denote the number of points where $f$ is not continuous and not differentiable respectively, then $\mathrm{m}+\mathrm{n}$ is equal to :
Answer
(B)
3
12
The number of solutions of the equation $4 \sin ^2 x-4 \cos ^3 x+9-4 \cos x=0 ; x \in[-2 \pi, 2 \pi]$ is :
Answer
(A)
0
13
Let the locus of the midpoints of the chords of the circle $x^2+(y-1)^2=1$ drawn from the origin intersect the line $x+y=1$ at $\mathrm{P}$ and $\mathrm{Q}$. Then, the length of $\mathrm{PQ}$ is :
Answer
(C)
$\frac{1}{\sqrt{2}}$
14
Let $\alpha$ be a non-zero real number. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is a differentiable function such that $f(0)=2$ and $\lim\limits_{x \rightarrow-\infty} f(x)=1$. If $f^{\prime}(x)=\alpha f(x)+3$, for all $x \in \mathbf{R}$, then $f\left(-\log _{\mathrm{e}} 2\right)$ is equal to :
Answer
(B)
9
15
Let $\mathrm{P}$ and $\mathrm{Q}$ be the points on the line $\frac{x+3}{8}=\frac{y-4}{2}=\frac{z+1}{2}$ which are at a distance of 6 units from the point $\mathrm{R}(1,2,3)$. If the centroid of the triangle PQR is $(\alpha, \beta, \gamma)$, then $\alpha^2+\beta^2+\gamma^2$ is :
Answer
(A)
18
16
The value of $\int\limits_0^1\left(2 x^3-3 x^2-x+1\right)^{\frac{1}{3}} \mathrm{~d} x$ is equal to :
Answer
(C)
0
17
If the mirror image of the point $P(3,4,9)$ in the line
$\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-2}{1}$ is $(\alpha, \beta, \gamma)$, then 14 $(\alpha+\beta+\gamma)$ is :
Answer
(D)
108
18
Let $S_n$ denote the sum of the first $n$ terms of an arithmetic progression. If $S_{10}=390$ and the ratio of the tenth and the fifth terms is $15: 7$, then $\mathrm{S}_{15}-\mathrm{S}_5$ is equal to :
Answer
(C)
790
19
Let $m$ and $n$ be the coefficients of seventh and thirteenth terms respectively
in the expansion of $\left(\frac{1}{3} x^{\frac{1}{3}}+\frac{1}{2 x^{\frac{2}{3}}}\right)^{18}$. Then $\left(\frac{\mathrm{n}}{\mathrm{m}}\right)^{\frac{1}{3}}$ is :
Answer
(D)
$\frac{9}{4}$
20
Let $f(x)=\left\{\begin{array}{l}x-1, x \text { is even, } \\ 2 x, \quad x \text { is odd, }\end{array} x \in \mathbf{N}\right.$.
If for some $\mathrm{a} \in \mathbf{N}, f(f(f(\mathrm{a})))=21$, then $\lim\limits_{x \rightarrow \mathrm{a}^{-}}\left\{\frac{|x|^3}{\mathrm{a}}-\left[\frac{x}{\mathrm{a}}\right]\right\}$, where $[t]$ denotes the greatest integer less than or equal to $t$, is equal to :
Answer
(D)
144
21
Three points $\mathrm{O}(0,0), \mathrm{P}\left(\mathrm{a}, \mathrm{a}^2\right), \mathrm{Q}\left(-\mathrm{b}, \mathrm{b}^2\right), \mathrm{a}>0, \mathrm{~b}>0$, are on the parabola $y=x^2$. Let $\mathrm{S}_1$ be the area of the region bounded by the line $\mathrm{PQ}$ and the parabola, and $\mathrm{S}_2$ be the area of the triangle $\mathrm{OPQ}$. If the minimum value of $\frac{\mathrm{S}_1}{\mathrm{~S}_2}$ is $\frac{\mathrm{m}}{\mathrm{n}}, \operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$, then $\mathrm{m}+\mathrm{n}$ is equal to __________.
Answer
7
22
The sum of squares of all possible values of $k$, for which area of the region bounded by the parabolas $2 y^2=\mathrm{k} x$ and $\mathrm{ky}^2=2(y-x)$ is maximum, is equal to :
Answer
8
23
If $y=\frac{(\sqrt{x}+1)\left(x^2-\sqrt{x}\right)}{x \sqrt{x}+x+\sqrt{x}}+\frac{1}{15}\left(3 \cos ^2 x-5\right) \cos ^3 x$, then $96 y^{\prime}\left(\frac{\pi}{6}\right)$ is equal to :
Answer
105
24
If $\frac{\mathrm{d} x}{\mathrm{~d} y}=\frac{1+x-y^2}{y}, x(1)=1$, then $5 x(2)$ is equal to __________.
Answer
5
25
Let $f:(0, \infty) \rightarrow \mathbf{R}$ and $\mathrm{F}(x)=\int\limits_0^x \mathrm{t} f(\mathrm{t}) \mathrm{dt}$. If $\mathrm{F}\left(x^2\right)=x^4+x^5$, then $\sum\limits_{\mathrm{r}=1}^{12} f\left(\mathrm{r}^2\right)$ is equal to ____________.
Answer
219
26
Let $A B C$ be an isosceles triangle in which $A$ is at $(-1,0), \angle A=\frac{2 \pi}{3}, A B=A C$ and $B$ is on the positve $x$-axis. If $\mathrm{BC}=4 \sqrt{3}$ and the line $\mathrm{BC}$ intersects the line $y=x+3$ at $(\alpha, \beta)$, then $\frac{\beta^4}{\alpha^2}$ is __________.
Answer
36
27
Let $A=I_2-2 M M^T$, where $M$ is a real matrix of order $2 \times 1$ such that the relation $M^T M=I_1$ holds. If $\lambda$ is a real number such that the relation $A X=\lambda X$ holds for some non-zero real matrix $X$ of order $2 \times 1$, then the sum of squares of all possible values of $\lambda$ is equal to __________.
Answer
2
28
Let $\overrightarrow{\mathrm{a}}=\hat{i}+\hat{j}+\hat{k}, \overrightarrow{\mathrm{b}}=-\hat{i}-8 \hat{j}+2 \hat{k}$ and $\overrightarrow{\mathrm{c}}=4 \hat{i}+\mathrm{c}_2 \hat{j}+\mathrm{c}_3 \hat{k}$ be three vectors such that $\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}$. If the angle between the vector $\overrightarrow{\mathrm{c}}$ and the vector $3 \hat{i}+4 \hat{j}+\hat{k}$ is $\theta$, then the greatest integer less than or equal to $\tan ^2 \theta$ is _______________.
Answer
38
29
If three successive terms of a G.P. with common ratio $\mathrm{r}(\mathrm{r}>1)$ are the lengths of the sides of a triangle and $[r]$ denotes the greatest integer less than or equal to $r$, then $3[r]+[-r]$ is equal to _____________.
Answer
1
30
The lines $\mathrm{L}_1, \mathrm{~L}_2, \ldots, \mathrm{L}_{20}$ are distinct. For $\mathrm{n}=1,2,3, \ldots, 10$ all the lines $\mathrm{L}_{2 \mathrm{n}-1}$ are parallel to each other and all the lines $L_{2 n}$ pass through a given point $P$. The maximum number of points of intersection of pairs of lines from the set $\left\{\mathrm{L}_1, \mathrm{~L}_2, \ldots, \mathrm{L}_{20}\right\}$ is equal to ___________.