JEE MAIN - Mathematics (2024 - 1st February Evening Shift - No. 5)
Let the system of equations $x+2 y+3 z=5,2 x+3 y+z=9,4 x+3 y+\lambda z=\mu$ have infinite number of solutions. Then $\lambda+2 \mu$ is equal to :
22
17
15
28
Explanation
$$
\begin{aligned}
& x+2 y+3 z=5 \\\\
& 2 x+3 y+z=9 \\\\
& 4 x+3 y+\lambda z=\mu
\end{aligned}
$$
For infinite following $\Delta=\Delta_1=\Delta_2=\Delta_3=0$
$\begin{aligned} & \Delta=\left|\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1 \\ 4 & 3 & \lambda\end{array}\right|=0 \Rightarrow \lambda=-13 \\\\ & \Delta_1=\left|\begin{array}{llc}5 & 2 & 3 \\ 9 & 3 & 1 \\ \mu & 3 & -13\end{array}\right|=0 \Rightarrow \mu=15 \\\\ & \Delta_2=\left|\begin{array}{ccc}1 & 5 & 3 \\ 2 & 9 & 1 \\ 4 & 15 & -13\end{array}\right|=0\end{aligned}$
$$ \Delta_3=\left|\begin{array}{ccc} 1 & 2 & 5 \\ 2 & 3 & 9 \\ 4 & 3 & 15 \end{array}\right|=0 $$
For $\lambda=-13, \mu=15$ system of equation has infinite solution hence $\lambda+2 \mu=17$
For infinite following $\Delta=\Delta_1=\Delta_2=\Delta_3=0$
$\begin{aligned} & \Delta=\left|\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1 \\ 4 & 3 & \lambda\end{array}\right|=0 \Rightarrow \lambda=-13 \\\\ & \Delta_1=\left|\begin{array}{llc}5 & 2 & 3 \\ 9 & 3 & 1 \\ \mu & 3 & -13\end{array}\right|=0 \Rightarrow \mu=15 \\\\ & \Delta_2=\left|\begin{array}{ccc}1 & 5 & 3 \\ 2 & 9 & 1 \\ 4 & 15 & -13\end{array}\right|=0\end{aligned}$
$$ \Delta_3=\left|\begin{array}{ccc} 1 & 2 & 5 \\ 2 & 3 & 9 \\ 4 & 3 & 15 \end{array}\right|=0 $$
For $\lambda=-13, \mu=15$ system of equation has infinite solution hence $\lambda+2 \mu=17$
Comments (0)
