JEE MAIN - Mathematics (2023 - 8th April Morning Shift)

1
The number of arrangements of the letters of the word "INDEPENDENCE" in which all the vowels always occur together is :
Answer
(A)
16800
2
Let $$f(x)=\frac{\sin x+\cos x-\sqrt{2}}{\sin x-\cos x}, x \in[0, \pi]-\left\{\frac{\pi}{4}\right\}$$. Then $$f\left(\frac{7 \pi}{12}\right) f^{\prime \prime}\left(\frac{7 \pi}{12}\right)$$ is equal to
Answer
(B)
$$\frac{2}{9}$$
3
Let $$A=\left[\begin{array}{ccc}2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$$. If $$|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} 2 A))|=(16)^{n}$$, then $$n$$ is equal to :
Answer
(C)
10
4
$$\lim_\limits{x \rightarrow 0}\left(\left(\frac{\left(1-\cos ^{2}(3 x)\right.}{\cos ^{3}(4 x)}\right)\left(\frac{\sin ^{3}(4 x)}{\left(\log _{e}(2 x+1)\right)^{5}}\right)\right)$$ is equal to _____________.
Answer
(B)
18
5
In a bolt factory, machines $$A, B$$ and $$C$$ manufacture respectively $$20 \%, 30 \%$$ and $$50 \%$$ of the total bolts. Of their output 3, 4 and 2 percent are respectively defective bolts. A bolt is drawn at random from the product. If the bolt drawn is found the defective, then the probability that it is manufactured by the machine $$C$$ is :
Answer
(C)
$$\frac{5}{14}$$
6
The number of ways, in which 5 girls and 7 boys can be seated at a round table so that no two girls sit together, is :
Answer
(D)
$$126(5 !)^{2}$$
7
The shortest distance between the lines $$\frac{x-4}{4}=\frac{y+2}{5}=\frac{z+3}{3}$$ and $$\frac{x-1}{3}=\frac{y-3}{4}=\frac{z-4}{2}$$ is :
Answer
(A)
$$3 \sqrt{6}$$
8
Let $$R$$ be the focus of the parabola $$y^{2}=20 x$$ and the line $$y=m x+c$$ intersect the parabola at two points $$P$$ and $$Q$$.

Let the point $$G(10,10)$$ be the centroid of the triangle $$P Q R$$. If $$c-m=6$$, then $$(P Q)^{2}$$ is :
Answer
(B)
325
9
The area of the region $$\left\{(x, y): x^{2} \leq y \leq 8-x^{2}, y \leq 7\right\}$$ is :
Answer
(C)
20
10

Let $$C(\alpha, \beta)$$ be the circumcenter of the triangle formed by the lines

$$4 x+3 y=69$$

$$4 y-3 x=17$$, and

$$x+7 y=61$$.

Then $$(\alpha-\beta)^{2}+\alpha+\beta$$ is equal to :

Answer
(B)
17
11
Let $$I(x)=\int \frac{(x+1)}{x\left(1+x e^{x}\right)^{2}} d x, x > 0$$. If $$\lim_\limits{x \rightarrow \infty} I(x)=0$$, then $$I(1)$$ is equal to :
Answer
(C)
$$\frac{e+2}{e+1}-\log _{e}(e+1)$$
12
Let $$\alpha, \beta, \gamma$$ be the three roots of the equation $$x^{3}+b x+c=0$$. If $$\beta \gamma=1=-\alpha$$, then $$b^{3}+2 c^{3}-3 \alpha^{3}-6 \beta^{3}-8 \gamma^{3}$$ is equal to :
Answer
(B)
19
13
Let the number of elements in sets $$A$$ and $$B$$ be five and two respectively. Then the number of subsets of $$A \times B$$ each having at least 3 and at most 6 elements is :
Answer
(D)
792
14
Let $$S_{K}=\frac{1+2+\ldots+K}{K}$$ and $$\sum_\limits{j=1}^{n} S_{j}^{2}=\frac{n}{A}\left(B n^{2}+C n+D\right)$$, where $$A, B, C, D \in \mathbb{N}$$ and $$A$$ has least value. Then
Answer
(D)
$$A+B$$ is divisible by $$\mathrm{D}$$
15
Let $$P=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right], A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$$ and $$Q=P A P^{T}$$. If $$P^{T} Q^{2007} P=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$$, then $$2 a+b-3 c-4 d$$ equal to :
Answer
(D)
2005
16
If for $$z=\alpha+i \beta,|z+2|=z+4(1+i)$$, then $$\alpha+\beta$$ and $$\alpha \beta$$ are the roots of the equation :
Answer
(D)
$$x^{2}+7 x+12=0$$
17
If the points with position vectors $$\alpha \hat{i}+10 \hat{j}+13 \hat{k}, 6 \hat{i}+11 \hat{j}+11 \hat{k}, \frac{9}{2} \hat{i}+\beta \hat{j}-8 \hat{k}$$ are collinear, then $$(19 \alpha-6 \beta)^{2}$$ is equal to :
Answer
(C)
36
18
Let $$[t]$$ denote the greatest integer $$\leq t$$. Then $$\frac{2}{\pi} \int_\limits{\pi / 6}^{5 \pi / 6}(8[\operatorname{cosec} x]-5[\cot x]) d x$$ is equal to __________.
Answer
14
19
Let $$A=\{0,3,4,6,7,8,9,10\}$$ and $$R$$ be the relation defined on $$A$$ such that $$R=\{(x, y) \in A \times A: x-y$$ is odd positive integer or $$x-y=2\}$$. The minimum number of elements that must be added to the relation $$R$$, so that it is a symmetric relation, is equal to ____________.
Answer
19
20
If the solution curve of the differential equation $$\left(y-2 \log _{e} x\right) d x+\left(x \log _{e} x^{2}\right) d y=0, x > 1$$ passes through the points $$\left(e, \frac{4}{3}\right)$$ and $$\left(e^{4}, \alpha\right)$$, then $$\alpha$$ is equal to ____________.
Answer
3
21
Let the mean and variance of 8 numbers $$x, y, 10,12,6,12,4,8$$ be $$9$$ and $$9.25$$ respectively. If $$x > y$$, then $$3 x-2 y$$ is equal to _____________.
Answer
25
22
Let $$\vec{a}=6 \hat{i}+9 \hat{j}+12 \hat{k}, \vec{b}=\alpha \hat{i}+11 \hat{j}-2 \hat{k}$$ and $$\vec{c}$$ be vectors such that $$\vec{a} \times \vec{c}=\vec{a} \times \vec{b}$$. If

$$\vec{a} \cdot \vec{c}=-12, \vec{c} \cdot(\hat{i}-2 \hat{j}+\hat{k})=5$$, then $$\vec{c} \cdot(\hat{i}+\hat{j}+\hat{k})$$ is equal to _______________.
Answer
11
23
If $$a_{\alpha}$$ is the greatest term in the sequence $$\alpha_{n}=\frac{n^{3}}{n^{4}+147}, n=1,2,3, \ldots$$, then $$\alpha$$ is equal to _____________.
Answer
5
24
Let $$[t]$$ denote the greatest integer $$\leq t$$. If the constant term in the expansion of $$\left(3 x^{2}-\frac{1}{2 x^{5}}\right)^{7}$$ is $$\alpha$$, then $$[\alpha]$$ is equal to ___________.
Answer
1275
25
Consider a circle $$C_{1}: x^{2}+y^{2}-4 x-2 y=\alpha-5$$. Let its mirror image in the line $$y=2 x+1$$ be another circle $$C_{2}: 5 x^{2}+5 y^{2}-10 f x-10 g y+36=0$$. Let $$r$$ be the radius of $$C_{2}$$. Then $$\alpha+r$$ is equal to _________.
Answer
2
26
The largest natural number $$n$$ such that $$3^{n}$$ divides $$66 !$$ is ___________.
Answer
31