JEE MAIN - Mathematics (2023 - 8th April Morning Shift - No. 23)
If $$a_{\alpha}$$ is the greatest term in the sequence $$\alpha_{n}=\frac{n^{3}}{n^{4}+147}, n=1,2,3, \ldots$$, then $$\alpha$$ is equal to _____________.
Answer
5
Explanation
$$
\begin{aligned}
& \text { Let } y=\frac{x^3}{x^4+147} \\\\
& \Rightarrow \frac{d y}{d x}=\frac{\left(x^4+147\right) \times 3 x^2-x^3\left(4 x^3\right)}{\left(x^4+147\right)^2} \\\\
& =\frac{3 x^6+441 x^2-4 x^6}{\left(x^4+147\right)^2}=\frac{441 x^2-x^6}{\left(x^4+147\right)^2}
\end{aligned}
$$
For maxima/minima, put $\frac{d y}{d x}=0$
$$ \begin{aligned} & \Rightarrow 441 x^2-x^6=0 \Rightarrow x^4=441 \\\\ & \Rightarrow x= \pm \sqrt{21}, \pm \sqrt{21} i \end{aligned} $$
Now, by descrates rule on number line we have
Since sign changes from negative to positive at 0 .
$\therefore$ Maximum value of is at $x=\sqrt{21}=4.58$
Now, $4<4.5<5$
$$ \begin{aligned} & \therefore \text { yat } x=4=\frac{64}{403}=0.159 \\\\ & y \text { at } x=5=\frac{125}{772}=0.162 \end{aligned} $$
So, $y$ is maximum at $x=5$
$$ \therefore \alpha=5 $$
For maxima/minima, put $\frac{d y}{d x}=0$
$$ \begin{aligned} & \Rightarrow 441 x^2-x^6=0 \Rightarrow x^4=441 \\\\ & \Rightarrow x= \pm \sqrt{21}, \pm \sqrt{21} i \end{aligned} $$
Now, by descrates rule on number line we have
_8th_April_Morning_Shift_en_23_1.png)
Since sign changes from negative to positive at 0 .
$\therefore$ Maximum value of is at $x=\sqrt{21}=4.58$
Now, $4<4.5<5$
$$ \begin{aligned} & \therefore \text { yat } x=4=\frac{64}{403}=0.159 \\\\ & y \text { at } x=5=\frac{125}{772}=0.162 \end{aligned} $$
So, $y$ is maximum at $x=5$
$$ \therefore \alpha=5 $$
Comments (0)
