JEE MAIN - Mathematics (2023 - 11th April Evening Shift)
1
Let $$a, b, c$$ and $$d$$ be positive real numbers such that $$a+b+c+d=11$$. If the maximum value of $$a^{5} b^{3} c^{2} d$$ is $$3750 \beta$$, then the value of $$\beta$$ is
Answer
(C)
90
2
The sum of the coefficients of three consecutive terms in the binomial expansion of $$(1+\mathrm{x})^{\mathrm{n}+2}$$, which are in the ratio $$1: 3: 5$$, is equal to :
has infinitely many solutions, then $$\alpha+\beta+2$$ is equal to :
Answer
(B)
4
4
For $$a \in \mathbb{C}$$, let $$\mathrm{A}=\{z \in \mathbb{C}: \operatorname{Re}(a+\bar{z}) > \operatorname{Im}(\bar{a}+z)\}$$ and $$\mathrm{B}=\{z \in \mathbb{C}: \operatorname{Re}(a+\bar{z})<\operatorname{Im}(\bar{a}+z)\}$$. Then among the two statements :
(S1): If $$\operatorname{Re}(a), \operatorname{Im}(a) > 0$$, then the set A contains all the real numbers
(S2) : If $$\operatorname{Re}(a), \operatorname{Im}(a) < 0$$, then the set B contains all the real numbers,
Answer
(A)
both are false
5
If the letters of the word MATHS are permuted and all possible words so formed are arranged as in a dictionary with serial numbers, then the serial number of the word THAMS is :
Answer
(A)
103
6
Let $$\mathrm{A}=\{1,3,4,6,9\}$$ and $$\mathrm{B}=\{2,4,5,8,10\}$$. Let $$\mathrm{R}$$ be a relation defined on $$\mathrm{A} \times \mathrm{B}$$ such that $$\mathrm{R}=\left\{\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right): a_{1} \leq b_{2}\right.$$ and $$\left.b_{1} \leq a_{2}\right\}$$. Then the number of elements in the set R is :
Answer
(D)
160
7
If the $$1011^{\text {th }}$$ term from the end in the binominal expansion of $$\left(\frac{4 x}{5}-\frac{5}{2 x}\right)^{2022}$$ is 1024 times $$1011^{\text {th }}$$R term from the beginning, then $$|x|$$ is equal to
Answer
(A)
$$
\frac{5}{16}
$$
8
$$\left|\begin{array}{ccc}x+1 & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda^{2}\end{array}\right|=\frac{9}{8}(103 x+81)$$, then $$\lambda, \frac{\lambda}{3}$$ are the roots of the equation :
Answer
(B)
$$4 x^{2}-24 x+27=0$$
9
Let the mean of 6 observations $$1,2,4,5, \mathrm{x}$$ and $$\mathrm{y}$$ be 5 and their variance be 10 .
Then their mean deviation about the mean is equal to :
Answer
(B)
$$\frac{8}{3}$$
10
If $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a continuous function satisfying $$\int_\limits{0}^{\frac{\pi}{2}} f(\sin 2 x) \sin x d x+\alpha \int_\limits{0}^{\frac{\pi}{4}} f(\cos 2 x) \cos x d x=0$$, then the value of $$\alpha$$ is :
Answer
(C)
$$-\sqrt{2}$$
11
Let $$f$$ and $$g$$ be two functions defined by
$$f(x)=\left\{\begin{array}{cc}x+1, & x < 0 \\ |x-1|, & x \geq 0\end{array}\right.$$ and $$\mathrm{g}(x)=\left\{\begin{array}{cc}x+1, & x < 0 \\ 1, & x \geq 0\end{array}\right.$$
Then $$(g \circ f)(x)$$ is :
Answer
(D)
continuous everywhere but not differentiable exactly at one point
12
Let $$y=y(x)$$ be the solution of the differential equation $$\frac{d y}{d x}+\frac{5}{x\left(x^{5}+1\right)} y=\frac{\left(x^{5}+1\right)^{2}}{x^{7}}, x > 0$$. If $$y(1)=2$$, then $$y(2)$$ is equal to :
Answer
(A)
$$\frac{693}{128}$$
13
Let the function $$f:[0,2] \rightarrow \mathbb{R}$$ be defined as
$$f(x)= \begin{cases}e^{\min \left\{x^{2}, x-[x]\right\},} & x \in[0,1) \\ e^{\left[x-\log _{e} x\right]}, & x \in[1,2]\end{cases}$$
where $$[t]$$ denotes the greatest integer less than or equal to $$t$$. Then the value of the integral $$\int_\limits{0}^{2} x f(x) d x$$ is :
Answer
(B)
$$2 e-\frac{1}{2}$$
14
The domain of the function $$f(x)=\frac{1}{\sqrt{[x]^{2}-3[x]-10}}$$ is : ( where $$[\mathrm{x}]$$ denotes the greatest integer less than or equal to $$x$$ )
Answer
(A)
$$(-\infty,-2) \cup[6, \infty)$$
15
Let $$\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$$ and $$\vec{b}=\hat{i}+\hat{j}-\hat{k}$$. If $$\vec{c}$$ is a vector such that $$\vec{a} \cdot \vec{c}=11,
\vec{b} \cdot(\vec{a} \times \vec{c})=27$$ and $$\vec{b} \cdot \vec{c}=-\sqrt{3}|\vec{b}|$$, then $$|\vec{a} \times \vec{c}|^{2}$$ is equal to _________.
Answer
285
16
Let $$\mathrm{A}=\{1,2,3,4,5\}$$ and $$\mathrm{B}=\{1,2,3,4,5,6\}$$. Then the number of functions $$f: \mathrm{A} \rightarrow \mathrm{B}$$ satisfying $$f(1)+f(2)=f(4)-1$$ is equal to __________.
Answer
360
17
Let the probability of getting head for a biased coin be $$\frac{1}{4}$$. It is tossed repeatedly until a head appears. Let $$\mathrm{N}$$ be the number of tosses required. If the probability that the equation $$64 \mathrm{x}^{2}+5 \mathrm{Nx}+1=0$$ has no real root is $$\frac{\mathrm{p}}{\mathrm{q}}$$, where $$\mathrm{p}$$ and $$\mathrm{q}$$ are coprime, then $$q-p$$ is equal to ________.
Answer
27
18
If A is the area in the first quadrant enclosed by the curve $$\mathrm{C: 2 x^{2}-y+1=0}$$, the tangent to $$\mathrm{C}$$ at the point $$(1,3)$$ and the line $$\mathrm{x}+\mathrm{y}=1$$, then the value of $$60 \mathrm{~A}$$ is _________.
Answer
16
19
Let $$\mathrm{S}=\left\{z \in \mathbb{C}-\{i, 2 i\}: \frac{z^{2}+8 i z-15}{z^{2}-3 i z-2} \in \mathbb{R}\right\}$$. If $$\alpha-\frac{13}{11} i \in \mathrm{S}, \alpha \in \mathbb{R}-\{0\}$$, then
$$242 \alpha^{2}$$ is equal to _________.
Answer
1680
20
The number of points, where the curve $$f(x)=\mathrm{e}^{8 x}-\mathrm{e}^{6 x}-3 \mathrm{e}^{4 x}-\mathrm{e}^{2 x}+1, x \in \mathbb{R}$$ cuts $$x$$-axis, is equal to _________.