where [x] is the greatest integer is than or equal to x. If f is continuous at x = 2, then $$\lambda$$ + $$\mu$$ is equal to :
Answer
(A)
e($$-$$e + 1)
5
The value of the definite integral $$\int\limits_{\pi /24}^{5\pi /24} {{{dx} \over {1 + \root 3 \of {\tan 2x} }}} $$ is :
Answer
(C)
$${\pi \over {12}}$$
6
If b is very small as compared to the value of a, so that the cube and other higher powers of $${b \over a}$$ can be neglected in the identity $${1 \over {a - b}} + {1 \over {a - 2b}} + {1 \over {a - 3b}} + ..... + {1 \over {a - nb}} = \alpha n + \beta {n^2} + \gamma {n^3}$$, then the value of $$\gamma$$ is :
Answer
(C)
$${{{b^2}} \over {3{a^3}}}$$
7
Let y = y(x) be the solution of the differential equation $${{dy} \over {dx}} = 1 + x{e^{y - x}}, - \sqrt 2 < x < \sqrt 2 ,y(0) = 0$$
then, the minimum value of $$y(x),x \in \left( { - \sqrt 2 ,\sqrt 2 } \right)$$ is equal to :
The area (in sq. units) of the region, given by the set $$\{ (x,y) \in R \times R|x \ge 0,2{x^2} \le y \le 4 - 2x\} $$ is :
Answer
(D)
$${7 \over 3}$$
9
Let g : N $$\to$$ N be defined as
g(3n + 1) = 3n + 2,
g(3n + 2) = 3n + 3,
g(3n + 3) = 3n + 1, for all n $$\ge$$ 0.
Then which of the following statements is true?
Answer
(A)
There exists an onto function f : N $$\to$$ N such that fog = f
10
Let $$f:[0,\infty ) \to [0,\infty )$$ be defined as $$f(x) = \int_0^x {[y]dy} $$
where [x] is the greatest integer less than or equal to x. Which of the following is true?
Answer
(A)
f is continuous at every point in $$[0,\infty )$$ and differentiable except at the integer points.
11
The values of a and b, for which the system of equations
2x + 3y + 6z = 8
x + 2y + az = 5
3x + 5y + 9z = b
has no solution, are :
Answer
(A)
a = 3, b $$\ne$$ 13
12
Let 9 distinct balls be distributed among 4 boxes, B1, B2, B3 and B4. If the probability than B3 contains exactly 3 balls is $$k{\left( {{3 \over 4}} \right)^9}$$ then k lies in the set :
Answer
(A)
{x $$\in$$ R : |x $$-$$ 3| < 1}
13
The number of real roots of the equation $${e^{6x}} - {e^{4x}} - 2{e^{3x}} - 12{e^{2x}} + {e^x} + 1 = 0$$ is :
Answer
(A)
2
14
Let an ellipse $$E:{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$, $${a^2} > {b^2}$$, passes through $$\left( {\sqrt {{3 \over 2}} ,1} \right)$$ and has eccentricity $${1 \over {\sqrt 3 }}$$. If a circle, centered at focus F($$\alpha$$, 0), $$\alpha$$ > 0, of E and radius $${2 \over {\sqrt 3 }}$$, intersects E at two points P and Q, then PQ2 is equal to :
Answer
(C)
$${{16} \over 3}$$
15
Let y = y(x) be solution of the following differential equation $${e^y}{{dy} \over {dx}} - 2{e^y}\sin x + \sin x{\cos ^2}x = 0,y\left( {{\pi \over 2}} \right) = 0$$ If $$y(0) = {\log _e}(\alpha + \beta {e^{ - 2}})$$, then $$4(\alpha + \beta )$$ is equal to ______________.
Answer
4
16
Consider the following frequency distribution :
Class :
10-20
20-30
30-40
40-50
50-60
Frequency :
$$\alpha $$
110
54
30
$$\beta $$
If the sum of all frequencies is 584 and median is 45, then | $$\alpha$$ $$-$$ $$\beta$$ | is equal to _______________.
Answer
164
17
Let $$\overrightarrow p = 2\widehat i + 3\widehat j + \widehat k$$ and $$\overrightarrow q = \widehat i + 2\widehat j + \widehat k$$ be two vectors. If a vector $$\overrightarrow r = (\alpha \widehat i + \beta \widehat j + \gamma \widehat k)$$ is perpendicular to each of the vectors ($$(\overrightarrow p + \overrightarrow q )$$ and $$(\overrightarrow p - \overrightarrow q )$$, and $$\left| {\overrightarrow r } \right| = \sqrt 3 $$, then $$\left| \alpha \right| + \left| \beta \right| + \left| \gamma \right|$$ is equal to _______________.
Answer
3
18
The ratio of the coefficient of the middle term in the expansion of (1 + x)20 and the sum of the coefficients of two middle terms in expansion of (1 + x)19 is _____________.
Answer
1
19
There are 5 students in class 10, 6 students in class 11 and 8 students in class 12. If the number of ways, in which 10 students can be selected from them so as to include at least 2 students from each class and at most 5 students from the total 11 students of class 10 and 11 is 100 k, then k is equal to _____________.
Answer
238
20
If $$\alpha$$, $$\beta$$ are roots of the equation $${x^2} + 5(\sqrt 2 )x + 10 = 0$$, $$\alpha$$ > $$\beta$$ and $${P_n} = {\alpha ^n} - {\beta ^n}$$ for each positive integer n, then the value of $$\left( {{{{P_{17}}{P_{20}} + 5\sqrt 2 {P_{17}}{P_{19}}} \over {{P_{18}}{P_{19}} + 5\sqrt 2 P_{18}^2}}} \right)$$ is equal to _________.
Answer
1
21
The term independent of 'x' in the expansion of $${\left( {{{x + 1} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{x - 1} \over {x - {x^{1/2}}}}} \right)^{10}}$$, where x $$\ne$$ 0, 1 is equal to ______________.
Answer
210
22
Let $$S = \left\{ {n \in N\left| {{{\left( {\matrix{
0 & i \cr
1 & 0 \cr
} } \right)}^n}\left( {\matrix{
a & b \cr
c & d \cr
} } \right) = \left( {\matrix{
a & b \cr
c & d \cr
} } \right)\forall a,b,c,d \in R} \right.} \right\}$$, where i = $$\sqrt { - 1} $$. Then the number of 2-digit numbers in the set S is _____________.