JEE MAIN - Mathematics (2021 - 25th July Morning Shift - No. 22)

Let $$S = \left\{ {n \in N\left| {{{\left( {\matrix{ 0 & i \cr 1 & 0 \cr } } \right)}^n}\left( {\matrix{ a & b \cr c & d \cr } } \right) = \left( {\matrix{ a & b \cr c & d \cr } } \right)\forall a,b,c,d \in R} \right.} \right\}$$, where i = $$\sqrt { - 1} $$. Then the number of 2-digit numbers in the set S is _____________.
Answer
11

Explanation

Let $$X = \left( {\matrix{ a & b \cr c & d \cr } } \right)$$ & $$A = {\left( {\matrix{ 0 & i \cr 1 & 0 \cr } } \right)^n}$$

$$\Rightarrow$$ AX = IX

$$\Rightarrow$$ A = I

$$ \Rightarrow {\left( {\matrix{ 0 & i \cr 1 & 0 \cr } } \right)^n} = I$$

$$ \Rightarrow {A^8} = \left[ {\matrix{ 1 & 0 \cr 0 & 1 \cr } } \right]$$

$$\Rightarrow$$ n is multiple of 8

So, number of 2 digit numbers in the set

S = 11 (16, 24, 32, .........., 96)

Comments (0)

Advertisement