WAEC - Physics (2020 - No. 22)
The velocity of sound in air at 15°C is 340ms\(^{-1}\). Calculate the velocity at 47\(^o\)C
790ms\(^{-1}\)
602ms\(^{-1}\)
358ms\(^{-1}\)
322ms\(^{-1}\)
Explanation
Given the velocity of sound at \( 15^\circ C \):
\(v_0 = 340 \, \text{m/s}\)
The absolute temperatures are:
\(T_0 = 15 + 273.15 = 288.15 \, \text{K}\)
\(T = 47 + 273.15 = 320.15 \, \text{K}\)
We use the formula for the velocity of sound:
\(v = v_0 \sqrt{\frac{T}{T_0}}\)
Substituting the known values:
\(v = 340 \times \sqrt{\frac{320.15}{288.15}}\)
Calculating the ratio of temperatures:
\(\frac{320.15}{288.15} \approx 1.111\)
Taking the square root:
\(\sqrt{1.111} \approx 1.054\)
Finally, calculating the new velocity:
\(v \approx 340 \, \text{m/s} \times 1.054 \approx 358.6 \, \text{m/s}\)
The velocity of sound in air at \( 47^\circ C \) is approximately:
\(v \approx 358.6 \, \text{m/s}\)
Comments (0)
