WAEC - Mathematics (2023 - No. 1)

In the diagram, O is the center of the circle QRS and ∠SQR = 28°. Find ∠ORS.

\(56^0\)
\(28^0\)
\(76^0\)
\(62^0\)

Explanation

∠SOR = 2 × 28° = 56° (angle at the centre is twice the angle at the circumference)
From ∆SOR
|OS| = |OR| (radii)
So, ∆SOR is isosceles.

ORS = \(\frac{180^0 -  56^0}{2} = \frac{124^0}{2}\)  ( base angles of isosceles triangle are equal)

∴ ∠ORS = 62°

 

Comments (0)

Advertisement