WAEC - Mathematics (2020 - No. 7)

Given that \(\frac{\sqrt{3} + \sqrt{5}}{\sqrt{5}}\) 

= x + y\(\sqrt{15}\), find the value of (x + y) 

1\(\frac{3}{5}\)
1\(\frac{2}{5}\)
1\(\frac{1}{5}\)
\(\frac{1}{5}\)

Explanation

\(\frac{\sqrt{3} + \sqrt{5}}{\sqrt{5}}\)  = x + y\(\sqrt{15}\)

cross multiply to have: \(\sqrt{3}\) + \(\sqrt{5}\) =  x\(\sqrt{5}\) + 5y\(\sqrt{3}\)

Collect like roots :  x\(\sqrt{5}\) = \(\sqrt{5}\) ā†’ x = 1

  5y\(\sqrt{3}\) = \(\sqrt{3}\) ā†’ y = \(\frac{1}{5}\)

∓ ( x + y ) = 1 + \(\frac{1}{5}\)

= 1\(\frac{1}{5}\)

 

Comments (0)

Advertisement