WAEC - Mathematics (2018 - No. 7)

If \(\log_{10}\)(6x - 4) - \(\log_{10}\)2 = 1, solve for x.
2
3
4
5

Explanation

\(\log_{10}\)(6x - 4) - \(\log_{10}\)2 = 1

\(\log_{10}\)(6x - 4) - \(\log_{10}\)2 = \(\log_{10}\)10

\(\log_{10}\)\(\frac{6x - 4}{2}\) - \(\log_{10}\)10

\(\frac{6x - 4}{2}\) = 10

6x - 4 = 2 x 10

= 20

6x = 20 + 4

6x = 20

x = \(\frac{24}{6}\)

x = 4

Comments (0)

Advertisement