WAEC - Mathematics (2018 - No. 12)

A curve is such that when y = 0, x = -2 or x = 3. Find the equation of the curve.
y = \(x^2 - 5x - 6\)
y = \(x^2 + 5x - 6\)
y = \(x^2 + x - 6\)
y = \(x^2 - x - 6\)

Explanation

Since the curve cuts the x-axis at x = -2 and x = 3,

(x + 2)(x - 3) = 0

\(x^2 - 3x + 2x - 6\) = 0

\(x^2 - x - 6\) = 0

Hence, the equation of the curve is

y = \(x^2 - x - 6\)

 

Comments (0)

Advertisement