WAEC - Mathematics (2015 - No. 31)

Make K the subject of the relation T = \(\sqrt{\frac{TK - H}{K - H}}\)
K = \(\frac{H(T^2 - 1)}{T^2 - T}\)
K = \(\frac{HT}{(T - 1)^2}\)
K = \(\frac{H(T^2 + 1)}{T}\)
K = \(\frac{H(T - 1)}{T}\)

Explanation

T = \(\sqrt{\frac{TK - H}{K - H}}\)

Taking the square of both sides, give

T2 = \(\frac{TK - H}{K - H}\)

T2(K - H) = TK - H

T2K - T2H = TK - H

T2K - TK = T2H - H

K(T2 - T) = H(T2 - 1)

K = \(\frac{H(T^2 - 1)}{T^2 - T}\)

Comments (0)

Advertisement