WAEC - Mathematics (2014 - No. 24)

Simplify \(\sqrt{\frac{8^2 \times 4^{n + 1}}{2^{2n} \times 16}}\)
16
8
4
1

Explanation

\(\sqrt{\frac{8^2 \times 4^{n + 1}}{2^{2n} \times 16}}\)

= \(\sqrt{\frac{2^{3(2)} \times 2^{2(n + 1)}}{2^{2n} \times 2^4}}\)

= \(\sqrt{\frac{2^6 \times 2^{2n + 2)}}{2^{2n} + 4}}\)

= \(\sqrt{\frac{2^6 + 2^{2n + 2)}}{2^{2n} + 4}}\)

= \(\sqrt{\frac{2^{2n + 8}}{2^{2n} + 4}}\)

= \(\sqrt{2^{2n + 8} \div 2^{2n} + 4}\)

= \(\sqrt{2^{2n - 2n} + 8 - 4}\)

= \(\sqrt{2^4}\)

= \(\sqrt{16}\)

= 4

Comments (0)

Advertisement