WAEC - Mathematics (2013 - No. 33)
Given that (x + 2)(x2 - 3x + 2) + 2(x + 2)(x - 1) = (x + 2) M, find M
(x + 2)2
x(x + 2)
xv + 2
x2 - x
Explanation
(x + 2)(x\(^2\) - 3x + 2) + 2(x + 2)(x - 1) = (x + 2)m
(x + 2)[(x\(^2\) - 3x + 2) + 2(x - 1)] = (x + 2)M
divide both side by (x + 2)
(x\(^2\) - 3x + 2) + 2(x - 1) = M
x\(^2\) - 3x + 2 + 2x - 2 = M
x\(^2\) - 3x + 2 + 2x - 2 = M
x\(^2\) - 3x + 2x = M
x\(^2\) - x = M
M = x\(^2\) - x
(x + 2)[(x\(^2\) - 3x + 2) + 2(x - 1)] = (x + 2)M
divide both side by (x + 2)
(x\(^2\) - 3x + 2) + 2(x - 1) = M
x\(^2\) - 3x + 2 + 2x - 2 = M
x\(^2\) - 3x + 2 + 2x - 2 = M
x\(^2\) - 3x + 2x = M
x\(^2\) - x = M
M = x\(^2\) - x
Comments (0)
