WAEC - Mathematics (2007 - No. 1)
Evaluate \((111_{two})^2\) and leave your answer in base 2
\(111001_{two}\)
\(110001_{two}\)
\(101001_{two}\)
\(10010_{two}\)
Explanation
\((111_{two})^{2}=(111_{two})(111_{two})\\
=1 \times 2^{2}+1\times2^{1}+1\times 2^{0}=4+2+1=7_{_{ten}}\\
(111_{two})^{2}=7\times 7=49\\
\begin{matrix}
2 & 49\\
2 & 24\hspace{1mm}R\hspace{1mm}1\\
2 & 12\hspace{1mm}R\hspace{1mm}0\\
2 & 6\hspace{1mm}R\hspace{1mm}0\\
2 & 3\hspace{1mm}R\hspace{1mm}0\\
2 & 1\hspace{1mm}R\hspace{1mm}1\\
& 0\hspace{1mm}R\hspace{1mm}1\hspace{1mm}\uparrow
\end{matrix} \\
=110001_{2}\)
=1 \times 2^{2}+1\times2^{1}+1\times 2^{0}=4+2+1=7_{_{ten}}\\
(111_{two})^{2}=7\times 7=49\\
\begin{matrix}
2 & 49\\
2 & 24\hspace{1mm}R\hspace{1mm}1\\
2 & 12\hspace{1mm}R\hspace{1mm}0\\
2 & 6\hspace{1mm}R\hspace{1mm}0\\
2 & 3\hspace{1mm}R\hspace{1mm}0\\
2 & 1\hspace{1mm}R\hspace{1mm}1\\
& 0\hspace{1mm}R\hspace{1mm}1\hspace{1mm}\uparrow
\end{matrix} \\
=110001_{2}\)
Comments (0)
