WAEC - Mathematics (2004 - No. 16)
If \(\frac{x}{a+1}+\frac{y}{b}\) 1. Make y the subject of the relation
\(\frac{b(a-x+1)}{a+1}\)
\(\frac{a+1}{b(a-x+1)}\)
\(\frac{a(b-x+1)}{b+1}\)
\(\frac{b}{a(b-x+1)}\)
Explanation
If \(\frac{bx+y(a+1)}{b(a+1)}=1\\
bx + ya + y = ba + b; y(a+1) = ba+b-bx\\
y(a+1)=b(a+1-x); y = \frac{b(1+a-x}{a+1}\)
bx + ya + y = ba + b; y(a+1) = ba+b-bx\\
y(a+1)=b(a+1-x); y = \frac{b(1+a-x}{a+1}\)
Comments (0)
