WAEC - Further Mathematics (2024 - No. 24)
Find the coefficient of y\(^2\) in the binomial expansion of (y - 2x)\(^5\).
80x\(^3\)
80x\(^2\)
- 80x\(^2\)
- 80x\(^3\)
Explanation
Using \(^n_r C a^{n-r}b^r\)
In this case, let a = y, b = - 2x, n = 5
We want the term where the power of y is 2, which means: 5 - r = 2, so, r = 3
\(^n_r C a^{n-r}b^r\) = \(^5_3 C y^{5 - 3}(-2x)^3\) = 10y\(^2\) * - 8x\(^3\) = - 80y\(^2\)x\(^3\)
coefficient of y\(^2\) = - 80x\(^3\)
Comments (0)
