WAEC - Further Mathematics (2023 - No. 15)

Express \(\frac{3}{3 - √6}\) in the form \(x + m√y\)
3 - 3 √6
3 + 3√6
3 + √6
3 - √6

Explanation

\(\frac{3}{3 - √3}\)

Rationalize

\(= \frac{3}{3 - √6} \times \frac{3 + √6}{3 + √6}\)

\(=\frac{3(3 + √6)}{(3 - √6)(3 + √6)}\)

\(=\frac{3(3 + √6)}{9 - 6}=\frac{3(3 + √6)}{3}\)

∴ 3 + √6

 

Comments (0)

Advertisement