WAEC - Further Mathematics (2022 - No. 19)

Find the coefficient of x\(^2\)in the binomial expansion of \((x + \frac{2}{x^2})^5\)
10
40
32
80

Explanation

\((x + \frac{2}{x^2})^5\)

n = 5,  r = 4,  p = x  and q = \(\frac{2}{x^2}\) 

5C\(_4\)x\(^4\) (\(\frac{2}{x^2}\))1 = 5C\(_4\) \(\frac{2x^4}{x^2}\) 

5C\(_4\) 2x\(^2\) = \(\frac{5!}{[5-4]!4!}\) * 2x\(^2\)

\(\frac{5*4!}{4!} * 2x^2\) = 5 * 2x\(^2\) = 10x\(^2\)

The coefficient is 10.

 

 

 

Comments (0)

Advertisement