WAEC - Further Mathematics (2018 - No. 10)

Resolve \(\frac{3x - 1}{(x - 2)^{2}}, x \neq 2\) into partial fractions.
\(\frac{x}{2(x - 2)} - \frac{5}{(x - 2)^{2}}\)
\(\frac{5}{(x - 2)} + \frac{x}{2(x - 2)^{2}}\)
\(\frac{1}{2(x - 2)} + \frac{5x}{2(x- 2)^{2}}\)
\(\frac{-1}{2(x - 2)} + \frac{8x}{2(x - 2)^{2}}\)

Explanation

\(\frac{3x - 1}{(x - 2)^{2}} = \frac{A}{(x - 2)} + \frac{Bx}{(x - 2)^{2}}\)

\(\frac{3x - 1}{(x - 2)^{2}} = \frac{A(x - 2) + Bx}{(x - 2)^{2}}\)

Comparing, we have

\(3x - 1 = Ax - 2A + Bx  \implies -2A = -1;  A + B = 3\)

\(\therefore A = \frac{1}{2}; B = \frac{5}{2}\)

= \(\frac{1}{2(x - 2)} + \frac{5x}{2(x - 2)^{2}}\)

Comments (0)

Advertisement