WAEC - Further Mathematics (2014 - No. 17)

The radius of a sphere is increasing at a rate \(3cm s^{-1}\). Find the rate of increase in the surface area, when the radius is 2cm. 
\(8\pi cm^{2}s^{-1}\)
\(16\pi cm^{2}s^{-1}\)
\(24\pi cm^{2}s^{-1}\)
\(48\pi cm^{2}s^{-1}\)

Explanation

Surface area of sphere, \( A = 4\pi r^{2}\)

\(\frac{\mathrm d A}{\mathrm d r} = 8\pi r\)

The rate of change of radius with time \(\frac{\mathrm d r}{\mathrm d t} = 3cm s^{-1}\)

\(\frac{\mathrm d A}{\mathrm d t} = (\frac{\mathrm d A}{\mathrm d r})(\frac{\mathrm d r}{\mathrm d t})\)

= \(8\pi \times 2cm \times 3cm s^{-1} = 48\pi cm^{2}s^{-1}\)

Comments (0)

Advertisement