WAEC - Further Mathematics (2010 - No. 3)

If \(\frac{5}{\sqrt{2}} - \frac{\sqrt{8}}{8} = m\sqrt{2}\), where m is a constant. Find m.
\(1\frac{1}{2}\)
\(1\frac{1}{4}\)
\(2\frac{1}{4}\)
\(2\frac{1}{2}\)

Explanation

\(\frac{5}{\sqrt{2}} = \frac{5 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{5\sqrt{2}}{2}\)

\(\frac{\sqrt{8}}{8} = \frac{2\sqrt{2}}{8} = \frac{\sqrt{2}}{4}\)

\(\frac{5}{\sqrt{2}} - \frac{\sqrt{8}}{8} = (\frac{5}{2} - \frac{1}{4})\sqrt{2}\)

= \(\frac{9}{4}\sqrt{2} \)

= \(2\frac{1}{4}\sqrt{2}\)

Comments (0)

Advertisement