WAEC - Further Mathematics (2010 - No. 27)

Find the direction cosines of the vector \(4i - 3j\).
\(\frac{9}{10}, \frac{27}{10}\)
\(\frac{17}{27}, -\frac{17}{27}\)
\(\frac{4}{5}, -\frac{3}{5}\)
\(\frac{4}{7}, \frac{-3}{7}\)

Explanation

Given \(V = xi +yj\), the direction cosines are \(\frac{x}{|V|}, \frac{y}{|V|}\).

\(|4i - 3j| = \sqrt{4^{2} + (-3)^{2}} = \sqrt{25} = 5\)

Direction cosines = \(\frac{4}{5}, \frac{-3}{5}\).

Comments (0)

Advertisement